AI原生数据
搜索文档
AI要“干活”了!2026年这些趋势+风险必看
21世纪经济报道· 2025-12-04 17:47
Gartner 2026年十大战略技术趋势核心观点 - AI技术正加速进入大众生活,一个由AI驱动、超连接的世界正走向现实,AI在企业运营中既是创新的基础,也带来了新的安全风险,使其成为2026年战略布局的绝对核心 [1] - 2023-2024年是AI的“技术引爆”阶段,核心是展示“可能性”,而2025-2026年进入规模化落地阶段,核心是交付“价值”,主要难点正从“技术问题”转向“工程问题”和“商业问题” [9][11] - 2026年的AI世界既是创新高地,也是风险的战场,安全是发展的前提,只有做好风险防范,才能让AI真正成为业务增长的催化剂 [12] AI底层技术演进与关键趋势 - AI功能持续演进,随着Agent(智能体)功能持续落地,2026年这一趋势将进一步延续并升级 [1] - 多智能体系统(Multiagent Systems)从“单打独斗”走向“团队协作”,2026年将让多个专业AI分工协作,最后汇总成统一方案,提高了任务成功率并快速适应企业需求变化 [6] - 物理AI(Physical AI)目前主要布局在完全自动驾驶汽车和机器人领域,实现方式主要关注VLA(视觉语言模型)和世界模型两条路线 [7] - 构建AI超级计算平台是关键基础,它整合CPU、GPU、NPU等多种类型计算芯片,以处理海量数据的复杂计算任务,提高计算效率和连接能力是核心 [8] 四大重点看好的技术方向 - **AI原生开发平台**:已逐渐成为现实,非技术背景员工也能借助AI工具自主开发应用,Gartner预测到2030年,80%的企业将通过此类平台将大型软件工程团队转变为更小、更敏捷的团队 [2][3] - **特定领域语言模型**:基于企业私域数据训练,使AI从“通用能力”转向“专属价值”,例如利用企业内部数据训练垂域模型,帮助员工快速解决设备故障等问题 [6] - **多智能体系统**:多个专业AI分工协作,汇总成统一方案,提高任务成功率并适应需求变化 [6] - **物理AI**:主要应用于自动驾驶和机器人,技术路线包括VLA模型和世界模型,Gartner预测到2028年,80%的仓库将使用机器人技术或自动化 [7][8] AI规模化落地阶段的新挑战 - 从“大模型”转向“对的模型”,趋势是从“模型崇拜”转向“经济实用”,企业更需在特定领域表现出色、成本更低的“小模型” [10] - 在金融、医疗等高危领域,AI落地需解决幻觉、可解释性等问题,以应对那10%的“不可靠” [10] - AI需嵌入企业现有复杂系统,但数据分散在不同“数据孤岛”,且嵌入工作流需要重构软件、重组团队、重新培训员工,是一个庞大的“变革管理”工程 [10][11] - 市场人才需求转变,2024年前最缺“算法科学家”,从2025年起最缺“AI产品经理”和“AI应用工程师” [11] AI驱动的安全威胁与防御趋势 - AI驱动的攻击在速度和复杂性上增长,如深度伪造和“量身定制”的钓鱼邮件 [11] - 前置式主动网络安全成为2026年重要技术,核心在于运用AI驱动的安全运营、程序化阻断与欺骗技术在攻击者行动前实施干预 [11] - Gartner预测,到2030年,前置式主动防御解决方案将占到企业安全支出总额的一半 [12] - AI安全平台为第三方及定制AI应用提供统一防护,Gartner预测到2028年,使用该平台保护AI投资的企业比例将达到50%以上 [12]