Workflow
RL Scaling
icon
搜索文档
o3解读:OpenAI发力tool use,Manus们会被模型取代吗?
Founder Park· 2025-04-30 20:31
以下文章来源于海外独角兽 ,作者拾象 海外独角兽 . 研究科技大航海时代的伟大公司。 前段时间, OpenAI 陆续发布了 o 系列最新的两个模型 o3 和 o4-mini。其中, o3 模型 在融合了 tool use 能力后,模型表现已经覆盖了 Agent 产品常用的 use case。 Agent 产品开始分化出两类路线:一类是像 o3 那样把 tool use 通过 CoT 内化到模型中,模型可以用写代码调用的方式执行任务;另一类是类似 Manus, 把工作流程外化成人类 OS 中的 computer use。 同时,OpenAI 也已经把 Agent 产品作为了未来产品商业化收入占比的大头。 o3 这类基础大模型的 tool use 内化能力的提升,是否意味着专用 Agent 产品的技术护城河正在消失? 本篇文章针对于 OpenAI 发布的 o3、o4-mini 模型,开源的 Codex CLI,以及在 API 中使用的 GPT 4.1 进行了解读,尤其是 o3 agentic 和多模态 CoT 新能 力。 Founder Park 正在搭建「 AI 产品市集」社群,邀请从业者、开发人员和创业者,扫 ...
o3 深度解读:OpenAI 终于发力 tool use,agent 产品危险了吗?
海外独角兽· 2025-04-25 19:52
作者:cage, haozhen 我们在 2025 年 Q1 的大模型季报 中提到,在 AGI 路线图上,只有智能提升是唯一主线,因此我们持 续关注头部 AI Lab 的模型发布。上周 OpenAI 密集发布了 o 系列最新的两个模型 o3 和 o4-mini,开 源了 Codex CLI,还推出了在 API 中使用的 GPT 4.1。本文将着重对这些新发布进行解读,尤其是 o3 agentic 和多模态 CoT 新能力。 我们认为 OpenAI 在数次平淡的更新后,终于拿出了有惊艳表现的 o3。融合了 tool use 能力后,模型 表现已经覆盖了 agent 产品常用的 use case。Agent 产品开始分化出两类路线:一类是像 o3 那样把 和 o3 的发布模式一样, OpenAI 的 reasoning model 都是先训练出一个 mini reasoning 版本,再 scale 到 一个 long inference time、full tool use 能力的模型上。 而之前 GPT 模型总是先训练出最大的模型,再蒸 馏到小模型上。这个策略值得探讨其原因,我们的猜测是 RL 算法比较脆弱, ...
从 R1 到 Sonnet 3.7,Reasoning Model 首轮竞赛中有哪些关键信号?
海外独角兽· 2025-03-03 21:10
行业竞争格局 - 头部AI实验室在过去一个月密集发布三个SOTA推理模型:OpenAI的o3-mini和deep research、xAI的Grok 3、Anthropic的Claude 3.7 Sonnet,标志着新范式第一轮竞赛暂告段落 [1] - 当前尚无全面领先的SOTA模型:OpenAI和xAI在基础模型和竞赛解题能力占优,Anthropic更擅长真实世界工程问题,Claude 3.7 Sonnet的混合推理模型可能成为行业新标准 [1][3] - DeepSeek R1在有限资源下实现开源创新,虽表现暂时落后但技术扩散价值显著 [7][8] 模型能力对比 - **数学推理**:o3-mini-high在AIME 2024测试中Pass@1达87.3,显著优于Claude 3.7 Sonnet的61.3/80.0和Grok 3的83.9/93.3 [9] - **工程代码**:Claude 3.7 Sonnet在SWE-bench验证中准确率领先20%+,可靠代码输出长度从3.5版的200行提升至1000-1500行 [19][20] - **多模态**:Gemini 2.0 Flash在多模态理解能力上绝对领先,但高阶融合能力尚未涌现 [6] 技术范式演进 - 基础模型预训练仍具关键价值:高质量基础模型是强化学习的前提,且当前评估方法已落后于模型智能发展 [12] - 混合推理成为趋势:Claude 3.7 Sonnet通过"extended thinking"设置实现快慢思考切换,未来模型需具备动态计算能力 [13][14][16] - RL Scaling效果优于垂直微调:OpenAI竞争性编程报告显示通用RL scaling比领域RL finetuning效果更好 [34][35] 产品应用创新 - Claude Code定位为AI Coding基建:通过命令行界面帮助AI扎根传统代码库,结合action scaling能力实现类Devin的agentic工作流 [22][23] - OpenAI Deep Research确立PMF形态:在网页理解深度、信息准确性、意图识别等方面领先,支持可配置的研究广度/深度控制 [29][31][32] - Agent能力升级关键:action scaling实现连续tool use,verifiable environment构建(如OS browser/Coding)及online learning机制 [25][27][28] 性能基准数据 | 测试维度 | Claude 3.7 Sonnet | Grok 3 Beta | o3-mini-high | |----------------|-------------------|-------------|--------------| | GPQA Diamond | 78.2/84.8 | 80.2/84.6 | 79.7 | | Codeforces评分 | - | - | 2130 | | SWE-bench | 49.3 | - | 49.2 | [9]