中介层(Interposers)

搜索文档
封装技术,巨变前夜
半导体芯闻· 2025-03-24 18:20
文章核心观点 半导体中介层与基板领域正迎来重大变革,从单纯中介体转变为工程平台,这一转变由人工智能、高性能计算和下一代通信推动,行业正从硅中介层转向有机和玻璃基解决方案,但在制造、热管理等方面面临挑战,需采用新技术和新材料应对 [1] 各部分总结 弥合互联鸿沟 - 半导体行业依赖重分布层(RDL)路由信号,但现有技术已达极限,新基板材料和工艺创新对实现互连密度至关重要 [4] - 行业正从硅中介层转向有机和玻璃基解决方案,有机中介层可实现更大封装尺寸和细间距互连,玻璃基板有机械稳定性和精细RDL功能,但制造和处理存在挑战 [4] - RDL技术发展以支持1μm线/空间分辨率,先进堆叠技术可行,扇出面板级封装(FOPLP)能实现高密度集成,但面临产量和工艺控制挑战 [6][7] 克服制造挑战 - 中介层和基板复杂化使保持纳米级精度成挑战,向面板级处理过渡引入新变量,玻璃芯基板和混合中介层带来制造和缺陷检测难题 [8][9] - 中介层微缩中高纵横比特征电镀困难,制造商需采用人工智能驱动的过程控制和实时监控技术,统计过程控制(SPC)至关重要 [9] 热管理 - 半导体封装发展使热管理成关键障碍,中介层和基板需发挥积极散热作用,高效热解决方案需求增加 [11] - 制造商研究嵌入式微流体冷却通道、相变材料、基于碳纳米管的热界面材料和混合金属有机散热器等新热管理策略 [12] 新材料创新 - 传统有机基板达极限,制造商转向玻璃芯复合材料、陶瓷和有机 - 无机混合结构等新材料,但制造存在复杂性 [14] - 玻璃芯中介层介电常数低、尺寸稳定性好,但有制造挑战;混合基板结合有机和硅优势,但需解决热膨胀失配问题 [14][15] 先进的键合技术 - 传统微凸块键合难满足细间距要求,混合键合成有前途替代方案,但面临表面处理、缺陷缓解和工艺均匀性挑战 [17] - 直接铜互连可提高信号完整性和热性能,但存在防止氧化和管理高压等挑战 [18] - 向细间距键合技术转变对建模和仿真工具提出新要求,扩大生产仍面临挑战 [19] 提高纳米级可靠性 - 确保中介层和基板长期可靠性需转向人工智能驱动的预测建模,准确表征材料特性至关重要 [21] - 缺陷检测需采用人工智能驱动技术,可测试设计(DFT)和嵌入式传感技术可提高可靠性 [21][22] 有源中介层和智能基板 - 中介层和基板向智能系统组件转变,有源中介层可实现更智能信号布线、自适应电源管理和本地化处理 [23] - 光学互连集成到中介层是重要进步,基于硅光子的中介层可实现高速光通信,但面临热挑战和制造难题 [23][24]