Workflow
小米ORION
icon
搜索文档
公司通知团队缩减,懂端到端的留下来了。。。
自动驾驶之心· 2025-08-20 07:32
行业技术趋势 - 自动驾驶行业正从模块化方法转向端到端系统 实现传感器输入到车辆规划的直接建模 减少误差累积[2] - BEV感知技术打破模块化壁垒 在统一视角下实现技术跃迁[2] - 端到端自动驾驶需融合多模态大模型、BEV感知、强化学习、视觉Transformer及扩散模型等多领域技术[5] 技术发展现状 - UniAD统一感知和规划任务 首次实现多模块单模型运行 标志端到端时代来临[2] - 端到端技术发展出多方向:二段式(如PLUTO)、基于感知的一段式(如UniAD)、基于世界模型(如OccWorld)、基于扩散模型(如DiffusionDrive)及VLA范式[9] - 扩散模型应用于多模轨迹预测 提升对不确定环境的适应性 代表工作包括DiffusionDrive、Diffusion Planner及DiffE2E[17] 技术挑战与需求 - 端到端技术学习面临多领域知识碎片化、论文数量繁多、缺乏高质量文档及系统实战指导等挑战[5] - 行业要求算法工程师具备多技能融合能力 需同时掌握算法规则、感知决策及端到端与VLA等新技术[2] - VLA作为端到端自动驾驶的皇冠技术 上限高且难度大 成为学术界和工业界研发重点 招聘需求旺盛[20] 技术应用与突破 - 世界模型技术应用广泛 涵盖场景生成、端到端及闭环仿真 代表工作包括Drive-OccWorld和OccLLaMA[15] - VLA技术融合VLM、BEV、扩散模型及强化学习 前沿工作包括小米ORION、OpenDriveVLA及ReCogDrive[20] - RLHF技术应用于VLA算法微调 具备良好延展性 支持预训练和强化学习模块搭建[21] 工业界实践 - 主机厂算法专家主导端到端、大模型及世界模型等前沿算法预研与量产 完成多项自动驾驶产品交付[22] - 行业资源向端到端与多模态大模型攻坚集中 但仍需规则算法兜底 反映技术过渡期特点[2] - 小米ORION截至2025年7月开源推理和评测模块 推动VLA技术透明化与行业应用[20]
正式开课!端到端与VLA自动驾驶小班课,优惠今日截止~
自动驾驶之心· 2025-08-14 07:33
行业技术发展 - VLA(Vision-Language-Action)被视为自动驾驶量产的新里程碑,技术从E2E+VLM演进至VLA,引发行业广泛关注并吸引传统规控、感知等领域人才转型需求[1] - 端到端自动驾驶技术呈现多方向分化,涵盖多模态大模型、BEV感知、强化学习、扩散模型等关键技术栈,但跨领域学习门槛高且知识碎片化[11] - 技术迭代加速导致早期工业级端到端方案已不适应当前环境,VLA成为学术界与工业界共同发力的前沿方向,被称作"端到端自动驾驶的皇冠"[19] 课程体系设计 - 课程分五章递进式教学:从端到端发展史(第一章)、核心技术背景(第二章)到二段式(第三章)与一段式端到端及VLA(第四章),最终以RLHF微调实战收尾(第五章)[17][18][19][21] - 第二章聚焦未来两年高频技术关键词:大语言模型、BEV感知、扩散模型理论、强化学习与RLHF等[17][20] - 第四章深度解析四大一段式端到端子领域:基于感知(UniAD/VAD)、世界模型(Drive-OccWorld/OccLLaMA)、扩散模型(DiffusionDrive/DiffE2E)及VLA(ORION/OpenDriveVLA)[19] 职业发展价值 - VLA相关岗位薪资竞争力显著:VLA算法专家年薪达60-105万(40-70K*15薪),顶尖博士人才年薪144-192万(90-120K*16薪),实习生日薪220-400元[8] - 课程目标使学员达到1年经验算法工程师水平,掌握复现扩散模型/VLA框架能力,覆盖实习/校招/社招全场景需求[28] - 技术转型路径明确:传统算法岗可通过课程横向提升技能或转向VLA大模型算法工程师核心岗位[6][7] 教学特色 - 采用Just-in-Time Learning理念,通过案例教学快速构建技术框架,解决论文碎片化难题[12][13] - 配套三大实战环节:Diffusion Planner(扩散模型)、ORION(VLA)及RLHF微调大作业,实现理论到工业级应用的闭环[19][21] - 课程由TOP主机厂算法专家设计,整合CVPR'25、AAAI'25等最新研究成果及量产经验,8月15日开课分阶段解锁内容[22][26] 技术深度覆盖 - BEV感知模块详解:涵盖3D检测、车道线识别、OCC及轨迹预测规划等自动驾驶核心感知任务[20] - 多模态技术栈:从CLIP/LLAVA视觉语言基础到VLA完整技术链路,结合GRPO等前沿强化学习方法[19][20] - 扩散模型应用:重点解析多模轨迹预测技术,包括Diffusion Planner等工业落地方案[19]
面试了很多端到端候选人,还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-20 16:36
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可冲击百万年薪 [2] - 核心优势在于直接从传感器输入到车辆规划/控制信息的直接建模 避免了传统模块化方法的误差累积 BEV感知技术实现了模块间的统一视角 [2] - UniAD模型统一了感知和规划任务 标志着端到端时代的来临 但并非最终解决方案 后续涌现出多种技术流派 [2][4] 主要技术流派 - **二段式端到端**:以PLUTO为代表 专注于用模型实现自车规划 [4] - **一段式端到端**: - 基于感知的方法:以UniAD为代表持续发展 [4] - 基于世界模型的方法:以OccWorld为代表开创新流派 [4] - 基于扩散模型的方法:以DiffusionDrive为代表实现多模轨迹预测 [4] - **VLA方向**:大模型时代下的端到端新方向 结合视觉语言模型技术 [4][22] 行业应用与人才需求 - VLA/VLM大模型算法专家岗位薪资达40-70K*15薪 博士应届生可达90-120K*16薪 [9] - 技术岗位覆盖感知算法、模型量化部署等多方向 实习岗位日薪220-400元 [9] - 主机厂已开展端到端算法预研和量产交付 形成完整技术落地闭环 [25] 技术发展挑战 - 需同时掌握多模态大模型、BEV感知、强化学习、扩散模型等跨领域知识 [14] - 论文数量繁多且知识碎片化 缺乏系统性学习框架和实战指导 [14] - 高质量文档稀缺 提高了技术入门门槛 [14] 课程体系设计 - **知识框架**:覆盖BEV感知、扩散模型理论、强化学习与RLHF等核心技术栈 [6][23] - **案例研究**: - 二段式端到端解析PLUTO、CarPlanner等经典算法 [21] - 一段式端到端深入UniAD、OccLLaMA等前沿工作 [22] - **实战环节**: - 扩散模型轨迹预测实战Diffusion Planner [22] - VLA方向实战小米ORION开源框架 [22] - 大作业RLHF微调实现技术迁移应用 [24] 技术发展趋势 - 世界模型应用扩展至场景生成、闭环仿真等多场景 成为近年研究热点 [22] - 扩散模型与VLM结合推动多模轨迹预测技术落地 [22] - VLA被视为端到端自动驾驶的"皇冠" 工业界招聘需求旺盛 [22]