Workflow
BEV感知
icon
搜索文档
最近会开放一批端到端&VLA的岗位需求
自动驾驶之心· 2026-01-12 11:15
行业技术趋势与共识 - 行业共识认为2026年将是自动驾驶领域“结硬寨,打呆仗”的一年,算法层面短期内看不到重大变革,技术重点转向对端到端、视觉语言动作模型等前沿技术的量产优化[1] - 技术发展方向明确,当前阶段需要攻克工程化应用的“硬骨头”,因此行业人力招聘重点倾向于有经验的算法工程师,并开放了大量职位[1] - 端到端和视觉语言动作模型技术方向的关键词包括:BEV感知、大模型、扩散模型、强化学习[1] 核心课程内容与结构 - 课程第一章概述端到端自动驾驶,涵盖其发展历史、从模块化到端到端的演进原因,并分析一段式、二段式及视觉语言动作模型范式的优缺点与适用场景[6] - 课程第二章重点讲解端到端技术涉及的背景知识,包括视觉语言动作模型所需的大语言模型、扩散模型及强化学习,以及一段式端到端涉及的BEV感知,这些内容被认为是未来两年求职面试的高频技术关键词[6][7] - 课程第三章聚焦二段式端到端,解析其定义与出现原因,并讲解领域内的经典算法与前沿进展[7] - 课程第四章为核心精华部分,深入讲解一段式端到端的多个子领域,包括基于感知、世界模型、扩散模型以及当前最热的基于视觉语言动作模型的方法[8] - 课程第五章设置大作业,以基于人类反馈的强化学习微调进行实战,该技术可迁移至视觉语言动作模型相关算法中,具有良好延展性[9] 关键技术模块详解 - 课程详细讲解Transformer基础及其在视觉领域的应用,并涵盖为多模态大模型奠定基础的CLIP和LLaVA模型[11] - 深入介绍BEV感知基础知识,解释其如何应用于自动驾驶核心感知任务[11] - 讲解扩散模型理论及其在输出多模轨迹预测中的应用,这是当前学术界与工业界尝试落地的热点[11] - 介绍视觉大语言模型相关的强化学习技术,包括基于人类反馈的强化学习及其在视觉大语言模型训练中的作用[11] - 基于世界模型的方法被重点介绍,因其应用广泛,不仅可用于场景生成、端到端驾驶,还可用于闭环仿真,是近两年的热门技术方向[12] - 基于扩散模型的端到端方法自2023年下半年兴起,其与基于模型的方法或视觉语言动作模型结合,可更好地适应环境不确定性,课程配套相关实战讲解[12] - 基于视觉语言动作模型的端到端方法被视为当前该领域的“皇冠”,上限高、难度大,行业招聘需求旺盛,课程选取了业界代表性工作并设置实战环节[12] 课程目标与受众要求 - 课程旨在推动端到端技术在工业界的落地,帮助学员真正理解端到端自动驾驶[10] - 期望学员学完后能达到具备约1年经验的端到端自动驾驶算法工程师水平,掌握涵盖多种方法的技术框架,并对关键技术有深刻理解[15] - 学员需自备GPU,推荐算力在RTX 4090及以上,并需具备一定的自动驾驶领域基础、相关技术概念知识以及编程与数学基础[13]
随到随学!端到端与VLA自动驾驶小班课(视频+答疑)
自动驾驶之心· 2026-01-08 13:58
课程核心定位与目标 - 课程为端到端与VLA自动驾驶进阶实战教程,旨在推动端到端技术在工业界落地,助力学员理解端到端自动驾驶 [8] - 课程联合工业界专家开设,内容涵盖学术界与工业界最前沿的技术栈,包括BEV感知、视觉语言模型、扩散模型、强化学习等 [1] - 课程目标是使学员学完后能达到约1年经验的端到端自动驾驶算法工程师水平,掌握技术框架并能够复现主流算法 [13] 课程内容架构 - **第一章:端到端算法介绍** 概述端到端自动驾驶发展历史、概念起源、从模块化到端到端的演进,并分析一段式、二段式及VLA范式的优缺点与适用场景 [4] - **第二章:端到端的背景知识** 作为课程重点,详细讲解VLA涉及的大语言模型、扩散模型及强化学习,以及一段式端到端涉及的BEV感知,为后续学习奠定基础 [4][9] - **第三章:二段式端到端** 聚焦二段式端到端,解析其定义与出现原因,并讲解经典算法PLUTO、CVPR'25的CarPlanner及最新工作Plan-R1,对比其与一段式端到端的优缺点 [5] - **第四章:一段式端到端与VLA** 作为课程精华部分,涵盖基于感知、世界模型、扩散模型及VLA的一段式端到端子领域,探讨各方法如何解决端到端终极目标 [6] - **第五章:课程大作业 - RLHF微调** 提供RLHF微调实战,涉及预训练与强化学习模块搭建及实验,该技术可迁移至VLA相关算法,具有良好延展性 [7] 关键技术深度解析 - **BEV感知** 讲解其基础知识,以及如何基于BEV实现自动驾驶核心感知任务,如3D检测、车道线识别、OCC及轨迹预测与规划 [9] - **扩散模型** 讲解其理论知识,并指出基于扩散模型输出多模轨迹是当前学术界与工业界热点,多家公司正尝试落地 [9] - **视觉大语言模型与强化学习** 讲解VLM相关的强化学习技术,包括RLHF及其在VLM训练中的作用,以及上半年热门技术GRPO [9] - **一段式端到端细分领域** 详细讲解基于感知的方法(如UniAD、地平线VAD、CVPR'24的PARA-Drive)、基于世界模型的方法(如AAAI'25的Drive-OccWorld、OccLLaMA)、基于扩散模型的方法(如DiffusionDrive、Diffusion Planner、DiffE2E)以及基于VLA的方法(如小米ORION、慕尼黑工大OpenDriveVLA、ReCogDrive) [10] 课程实战与前沿应用 - 课程包含配套实战,例如在扩散模型小节配套讲解Diffusion Planner实战,在VLA小节选择小米ORION作为实战,该开源项目截至2025年7月已开放推理与评测模块 [10] - 世界模型被强调为近两年非常热的技术方向,因其应用广泛,可用于场景生成、端到端驾驶及闭环仿真 [10] - VLA被视为目前端到端自动驾驶的皇冠,上限高且难度大,因此行业招聘需求旺盛,代表了新一代自动驾驶量产方案的预研方向 [10] 讲师资质与课程特色 - 讲师Jason拥有C9本科与QS50博士学历,已发表2篇CCF-A论文及若干CCF-B论文,现任国内TOP主机厂算法专家,从事端到端、大模型、世界模型等前沿算法的预研与量产,并主持完成多项自动驾驶感知与端到端算法的产品量产交付 [2] - 课程内容基本为工业界和学术界的Baseline,兼顾经典工作与最新前沿进展 [1] - 课程为小班课,随到随学,提供视频与答疑服务 [1] 学员收获与面向人群 - 学员将掌握端到端技术框架,涵盖一段式、两段式、世界模型、扩散模型等方法 [13] - 学员将对BEV感知、多模态大模型、强化学习、扩散模型等关键技术有更深刻了解,并可复现扩散模型、VLA等主流算法框架 [13] - 学员能够将所学应用到项目中,真正搞懂如何设计自己的端到端模型,并可在实习、校招、社招中受益 [13] - 课程面向具备一定自动驾驶领域基础、熟悉Transformer大模型、强化学习、BEV感知等基本概念,并具备概率论、线性代数及Python、PyTorch语言基础的学员,学习需自备GPU,推荐算力在4090及以上 [11] 行业趋势与技能需求 - 端到端自动驾驶是学术界与工业界的前沿方向,VLA范式是目前发展的焦点 [1][10] - 第二章所涉及的背景知识被总结为未来两年求职面试频率最高的技术关键词 [5] - 基于扩散模型输出多模轨迹能更好地适应自动驾驶不确定的环境,是当前热点 [10]
刚做了一份世界模型的学习路线图,面向初学者......
自动驾驶之心· 2025-12-25 11:24
世界模型与端到端自动驾驶的关系 - 世界模型并非端到端自动驾驶本身,而是实现端到端自动驾驶的一种途径[2] - 行业将自动驾驶世界模型的研究收敛于生成和重建两大领域[2] - 目前主流应用是利用世界模型进行闭环仿真,以应对Corner Case成本过高的问题[2] 世界模型课程核心内容架构 - 课程第一章概述世界模型与端到端自动驾驶的联系、发展历史、应用案例及不同技术流派[5] - 课程第二章涵盖世界模型的基础知识,包括场景表征、Transformer、BEV感知等,是求职面试的高频技术点[5][6] - 课程第三章探讨通用世界模型,解析李飞飞团队Marble、DeepMind Genie 3、Meta JEPA、DriveVLA-W0及特斯拉世界模型模拟器等前沿工作[6] - 课程第四章聚焦视频生成类世界模型,讲解Wayve的GAIA-1 & GAIA-2、上交UniScene、商汤OpenDWM、中科大InstaDrive等算法,并以OpenDWM进行实战[7] - 课程第五章聚焦OCC生成类世界模型,讲解三大论文并进行一个项目实战,此类方法可扩展至自车轨迹规划[8] - 课程第六章分享世界模型在工业界的应用现状、行业痛点、期望解决的问题以及相关岗位的面试准备经验[9] 世界模型涉及的关键技术栈 - 基础技术包括Transformer、视觉Transformer、CLIP、LLaVA等多模态大模型基础[11] - 涉及BEV感知基础知识及占用网络[11] - 涵盖扩散模型理论,该模型是输出多模轨迹的热点技术[11] - 包括闭环仿真相关的NeRF和3DGS技术[11] - 也涉及其他生成式模型,如VAE、GAN以及Next Token Prediction[11] 世界模型相关的重要研究 - 国内重要研究包括清华的OccWorld、复旦的OccLLaMA、华科ICCV'25的HERMES以及西交的II-World[12] 课程目标与受众要求 - 课程目标是推动端到端自动驾驶在工业界的落地,助力从业者深入理解端到端技术[10] - 学员需自备GPU,推荐算力在4090及以上[13] - 学员需具备自动驾驶领域基础,熟悉其基本模块[13] - 学员需了解transformer大模型、扩散模型、BEV感知等基本概念[13] - 学员需具备一定的概率论、线性代数及Python、PyTorch基础[13] - 课程期望使学员达到约1年经验的自动驾驶算法工程师水平,掌握世界模型技术进展及BEV感知等关键技术,并能复现主流算法框架[13] 课程进度安排 - 课程于1月1日开课,预计两个半月结课,采用离线视频教学,提供VIP群答疑及三次线上答疑,答疑服务截止2026年12月31日[14] - 各章节解锁时间:第一章12月10日,第二章1月1日,第三章1月20日,第四章2月4日,第五章2月24日,第六章3月1日[15]
下周开课!我们设计了一份自动驾驶世界模型学习路线图....
自动驾驶之心· 2025-12-24 17:22
自动驾驶世界模型技术趋势与课程核心内容 - 世界模型并非端到端自动驾驶本身,而是实现端到端自动驾驶的一种途径[2] - 当前行业将自动驾驶世界模型的研究收敛于生成和重建两大领域,并主要用于闭环仿真[2] - 行业正经历风格转换,因处理Corner Case成本过高,需寻求更有效的手段[2] - 近期世界模型相关研究呈现爆发式增长[2] 课程结构与核心知识点 - 课程共分六章,从概述、背景知识到专题应用,系统讲解世界模型[5][6][7][8][9] - 第一章阐述世界模型与端到端自动驾驶的联系、发展历史、应用案例及不同技术流派[5] - 第二章涵盖世界模型所需基础技术栈,包括场景表征、Transformer、BEV感知等[5] - 第三章聚焦通用世界模型,解析Marble、Genie 3、JEPA、DriveVLA-W0及特斯拉世界模型模拟器等前沿工作[6] - 第四章专注视频生成类世界模型,涵盖GAIA-1、GAIA-2、UniScene、OpenDWM、InstaDrive等,并以OpenDWM进行实战[7] - 第五章讲解基于OCC生成的世界模型,涉及OccWorld、OccLLaMA、HERMES、II-World等三大论文及一个项目实战[8][12] - 第六章为工业界应用与岗位专题,分享行业痛点、应用现状及面试准备经验[9] 课程技术深度与目标人群 - 课程深度覆盖BEV感知、多模态大模型、3DGS、扩散模型、NeRF、VAE、GAN等关键技术[11] - 课程面向具备一定自动驾驶基础、了解Transformer/扩散模型/BEV感知基本概念、有Python/PyTorch基础的学习者[13] - 学习目标为使学员达到约1年经验的自动驾驶世界模型算法工程师水平,能够复现主流算法并应用于实际项目[13] - 课程为离线视频教学,配备VIP群答疑及三次线上答疑,答疑服务截止2026年12月31日[14] - 课程自1月1日开课,预计两个半月结课,各章节按计划在12月10日至次年3月1日期间逐步解锁[14][15]
自动驾驶三大技术路线:端到端、VLA、世界模型
自动驾驶之心· 2025-11-21 08:04
文章核心观点 - 行业当前致力于解决安全且经济的 corner case 问题 [1] - 技术路线存在三大核心争议:单车智能与智能网联、视觉与激光雷达传感器、模块化与端到端算法架构 [1] - AI决策领域呈现VLM、VLA、WA(去LLM)三种主流技术路径分化,代表企业分别为Waymo、特斯拉/吉利/小鹏、华为 [1] - 自动驾驶技术演进遵循从规则系统到数据驱动,再到认知建模的路径 [3] 技术演进与架构 分阶段模块化架构 - 传统架构划分为感知(定位)、预测、规划、控制五大独立模块 [5] - 感知模块负责处理图像与点云数据,完成目标检测与地图分割任务 [5] - 定位模块融合GPS、IMU及地图匹配技术以确定车辆精确位置 [5] - 预测模块在几何空间内运行,预测周围环境未来状态(如车辆轨迹) [5] - 规划模块结合导航与感知信息,在有限时间内生成安全舒适的可行驶轨迹 [5] - 控制模块精确执行油门、刹车及转向指令 [5] BEV与OCC感知技术 - BEV感知于2022年成为主流,OCC感知于2023年兴起 [3] - BEV核心价值在于统一多传感器数据的表征空间,解决信息融合根本问题 [14] - BEV优势包括天然适配动态/静态感知、快速替代传统检测方案、99%常规场景可收敛 [15] - BEV缺陷体现在非结构化场景与超复杂路口(150米+)存在瓶颈,暴露纯几何表征天花板 [15] - OCC占用网络提供时间维、空间维及不确定性数据,优于仅提供目标检测的BEV [6] - 为解决BEV高度信息缺失及LSS投影缺陷(离散稀疏、不连贯、无容错),行业引入3DGS技术 [16][17] - 3DGS通过"软投影"特性实现连续致密特征、平滑过渡及容错能力,提升BEV感知质量 [18][19] 端到端自动驾驶 定义与分类 - 端到端系统定义为从传感器原始输入到任务变量输出的完全可微过程 [20][22] - 狭义端到端指传感器数据直接输出规划/控制动作或行驶轨迹 [22] - 技术演进分为四个阶段:感知端到端、决策规划模型化、模块化端到端、One Model单一模型端到端 [31] - 模块化端到端(华为、小鹏、理想采用)实现感知与规划模块的梯度协同训练,接口基于特征向量 [31] - One Model端到端(特斯拉采用)采用单一深度学习模型直接映射原始信号至轨迹输出 [31] 优势与挑战 - 端到端本质是实现感知信息的无损传递,通过梯度反传实现全局优化 [22][25] - 传统分阶段架构问题在于各模块独立优化导致的阶段目标不一致、误差累积及计算负担 [27] - 端到端面临可解释性悖论(性能提升但安全性可解释性降低)、数据规模与质量要求高、长尾场景覆盖度不足三大挑战 [27][28] - 决策层技术路线包括模仿学习(快速获得基础能力但泛化性不足)与强化学习(学得鲁棒策略但依赖仿真环境) [29] VLM、VLA与WA技术路径 VLM(视觉语言模型) - VLM让AI负责环境理解与推理,最终决策权交由传统模块以确保过程可控,代表企业为Waymo [1][35] - 技术流程为环境信息输入→VLM→推理链/多任务→非直接控制输出,运行频率低(2-5 Hz) [36] - VLM能够解释复杂交通场景并提升系统可解释性,但存在"行动鸿沟",即语言输出与实际控制脱节 [36] - 输入数据包括视觉输入(多摄像头图像、BEV特征图)、Prompt指令、导航指令及用户指令 [36] VLA(视觉语言动作模型) - VLA试图让AI直接学习所有驾驶技巧,通过海量数据训练实现"端到端"决策,代表企业为特斯拉、吉利、小鹏 [1][39] - 技术流程为环境信息输入→多模态编码器→LLM/VLM→动作解码器→驾驶动作,形成感知推理行动闭环 [40] - 语言输入演进历经直接导航指令、环境查询、任务级指令至对话式推理四个阶段 [42] - 动作解码器可采用自回归令牌器、扩散模型头或分层控制器生成控制信号或轨迹点序列 [42] - 小鹏第二代VLA为商业应用代表,技术发展历经语言模型作为解释器、模块化VLA、统一端到端VLA、推理增强VLA四个阶段 [44][48] WA(世界动作模型)与路线之争 - 华为ADS 4采用WEWA架构(世界引擎+世界动作模型),强调无需语言组件,直接建立时空认知能力 [1][52][55] - WEWA架构核心逻辑为视觉直接映射动作,跳过语言转化环节,关键指标为端到端时延降低50%、重刹率降低30% [56] - VLA架构核心逻辑为视觉-语言-动作三级传导,以语言为中介,优势在于复杂场景决策准确率提升及支持自然语言交互 [56] - 语言模型价值在于跨场景知识迁移能力(如预训练模型规划误差降低27.12%)、多模态信息统一表征及决策可解释性 [57] - 技术路线核心差异在于是否依赖语言抽象,VLA依赖语言模型归类场景,而WEWA主张直接学习时空物理规律 [55][57]
端到端和VLA的岗位,薪资高的离谱......
自动驾驶之心· 2025-11-19 08:03
行业人才需求与市场状况 - 端到端和视觉语言动作模型技术人才需求旺盛,多家主机厂和供应商积极寻求引荐 [1] - 某招聘网站上3-5年经验的专家岗位月薪高达70k [1] 核心技术栈与趋势 - 技术发展路径从模块化量产算法演进至端到端,再到当前的视觉语言动作模型 [2] - 核心算法涉及BEV感知、视觉语言模型、扩散模型、强化学习、世界模型等前沿领域 [2] - 掌握端到端与视觉语言动作模型技术意味着掌握学术界和工业界最前沿的技术方向 [2] 自动驾驶VLA与大模型实战课程 - 课程聚焦视觉语言动作模型领域,涵盖从视觉语言模型作为解释器到模块化、一体化及推理增强视觉语言动作模型的三大方向 [2] - 配套理论基础包括视觉、语言、动作三大模块,以及强化学习、扩散模型等,并设有大作业章节指导学员从零搭建模型及数据集 [2] - 授课老师包括清华大学硕士生,在ICCV/IROS/EMNLP等顶级会议发表多篇论文,拥有多模态感知、视觉语言动作模型、大模型Agent等前沿算法预研经验 [7] - 授课老师包括QS30高校博士在读,在EMNLP/IROS/ICCV等会议发表论文,研究方向涵盖多模态大模型与视觉语言动作模型,其GitHub开源项目总Star数超2k [7] - 授课老师包括清华大学硕士生,在RAL/IROS/EMNLP发表论文,从事在线建图感知、视觉语言动作模型、大模型Agent等算法预研 [10] 端到端与VLA自动驾驶课程 - 课程聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础,详细讲解BEV感知、大语言模型、扩散模型和强化学习 [11] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于视觉语言动作模型的ORION算法 [11] - 授课老师为C9本科+QS50博士,已发表CCF-A论文2篇,现任国内顶级主机厂算法专家,从事端到端、大模型、世界模型等算法的预研和量产,并完成多项产品量产交付 [13] 课程面向人群要求 - 学员需自备GPU,推荐算力在4090及以上 [14] - 需具备一定的自动驾驶领域基础,熟悉基本模块,了解transformer大模型、强化学习、BEV感知等技术概念 [15] - 需具备一定的概率论和线性代数基础,熟悉常用数学运算,并具备一定的Python和PyTorch语言基础 [15]
做了一份端到端进阶路线图,面向落地求职......
自动驾驶之心· 2025-11-18 08:05
文章核心观点 - 市场对端到端和视觉语言动作模型技术人才需求旺盛,主机厂和供应商积极寻求相关专家,3-5年经验的专家岗位月薪高达70k [1] - 为满足行业学习需求,公司联合工业界和学术界专家推出两门实战课程,分别聚焦VLA大模型和端到端自动驾驶技术 [1][10] 课程内容与技术方向 - 自动驾驶VLA与大模型实战课程由学术界团队主导,课程体系覆盖从视觉语言模型作为解释器到模块化VLA、一体化VLA及推理增强VLA的全链路技术 [1] - 课程配套理论基础模块,包括Vision/Language/Action三大组件、强化学习、扩散模型等,并通过大作业指导学员从零搭建VLA模型及数据集 [1] - 端到端与VLA自动驾驶课程由工业界专家带队,重点讲解一段式/两段式端到端算法,核心技术点包括BEV感知、大语言模型、扩散模型和强化学习 [10] - 端到端课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法,紧密结合工业界量产实践 [10] 师资力量与团队背景 - 课程讲师团队由清华大学硕士、QS30高校博士等顶尖学术背景人才组成,在ICCV、IROS、EMNLP、Nature Communications等顶级会议和期刊发表多篇论文 [6][9] - 工业界讲师具备C9本科和QS50博士学历,现任国内顶级主机厂算法专家,拥有端到端算法和大模型预研及量产交付经验,已发表多篇CCF-A/B类论文 [12] - 讲师团队长期维护GitHub开源项目,总Star数超过2k,具备扎实的多模态大模型研发能力和丰富的自动驾驶实战经验 [6] 目标学员与技术要求 - 课程面向具备一定自动驾驶领域基础的学习者,要求熟悉自动驾驶基本模块和transformer大模型、强化学习、BEV感知等技术概念 [14] - 学员需具备概率论、线性代数基础和常用的数学运算能力,同时要求掌握一定的Python和PyTorch编程语言基础 [14] - 硬件方面要求学员自备GPU,推荐算力在4090及以上级别以满足课程实战需求 [13]
正式结课!工业界大佬带队三个月搞定端到端自动驾驶
自动驾驶之心· 2025-10-27 08:03
端到端自动驾驶技术发展现状 - 2023年是端到端量产的元年,2025年将是端到端量产的大年,目前头部新势力和主机厂端到端技术均已实现量产[1] - 工业界存在一段式和两段式两种主要技术范式,一段式代表UniAD直接从传感器输入建模自车轨迹输出,二段式基于感知结果进一步输出自车和他车轨迹[1] - 2024年以来一段式端到端快速发展,衍生出基于感知、世界模型、扩散模型和VLA等多种一段式方法[3] 端到端自动驾驶技术体系 - 端到端与VLA技术涉及BEV感知、视觉语言模型VLM、扩散模型、强化学习等核心内容[5] - 主流自动驾驶企业包括智驾方案供应商和车企都在发力端到端自动驾驶的自研量产[3] - 技术栈涵盖学术界和工业界最前沿的方法,二段式端到端与一段式端到端前沿算法都是工业界和学术界的Baseline[5] 端到端自动驾驶课程内容 - 课程第一章介绍端到端发展历史、技术范式演变及优缺点,分析学术界和工业界研究方向[9] - 第二章重点讲解端到端背景知识,包括VLA涉及的大语言模型、扩散模型、强化学习,以及一段式端到端涉及的BEV感知[9] - 第三章聚焦二段式端到端,讲解经典算法PLUTO、CVPR'25的CarPlanner和最新工作Plan-R1[10] - 第四章涵盖一段式端到端子领域:基于感知的UniAD、基于世界模型、基于扩散模型和基于VLA的方法[12] - 课程大作业选择RLHF微调实战,涵盖预训练模块搭建、强化学习模块搭建和实验实施[13] 端到端自动驾驶技术细节 - 基于感知的方法讲解UniAD和地平线VAD,以及CVPR'24的PARA-Drive[14] - 基于世界模型的方法介绍AAAI'25的Drive-OccWorld和复旦团队的OccLLaMA,探讨世界模型在场景生成、端到端和闭环仿真中的应用[14] - 基于扩散模型的方法讲解DiffusionDrive、Diffusion Planner和吉大DiffE2E,配套Diffusion Planner实战[14] - 基于VLA的方法选取小米ORION、慕尼黑工大OpenDriveVLA和最新ReCogDrive,以ORION作为实战案例[14] 端到端自动驾驶学习目标 - 课程是首个面向端到端自动驾驶的进阶实战教程,旨在推动端到端在工业界落地[15] - 学员学完后能达到1年左右端到端自动驾驶算法工程师水平,掌握端到端技术框架和关键技术[19] - 学习成果包括可复现扩散模型、VLA等主流算法框架,并能将所学应用到实际项目中[19]
执行力是当下自动驾驶的第一生命力
自动驾驶之心· 2025-10-18 00:04
行业竞争格局演变 - 智能驾驶行业经历近两年洗牌后,牌桌已更换一批新玩家,但工业界对自动驾驶的投入持续加大,自动驾驶被视为AI核心技术及未来重点布局方向[1] - 行业在2022年之前处于蓬勃发展期,公司只要具备单一长板(如双目技术、硬件能力或AI能力)即可获得发展机会,但此后进入收缩期或平稳期,生存和发展的关键转变为补足短板[1] - 当前在赛道中活跃且表现良好的公司或主机厂,均在系统性地提升硬件、软件、AI能力及工程落地等综合实力,行业实践表明,只有成为“六边形战士”才能在未来竞争中存活并发展得更好[1] 2025年行业展望与人才需求 - 2025年行业将进入冷静期而非收敛期,L3、L4及Robotaxi等新赛道仍存在未解决的技术问题,这为所有参与者保留了机会[2] - 行业变革对个人而言是挑战更是机遇,能够留在行业内担当主力的均为技术栈丰富的综合型人才,抱有“捞一波”心态者将被淘汰,持续积累和构建壁垒是长期受用的策略[2] 自动驾驶之心知识星球社区概况 - 社区旨在解决初学者试错成本高、缺乏完整学习体系的问题,是一个集视频、图文、学习路线、问答、求职交流于一体的综合类自驾社区,目前成员已超过4000人,目标在未来2年内达到近万人规模[4] - 社区联合了众多学术界与工业界专家,内部梳理了超过40种技术路线,并邀请数十位活跃在一线的领域嘉宾答疑解惑,内容涵盖端到端入门、VLA学习路线、数据闭环工程实践等实用主题[4][6] - 社区成员背景多元,来自上海交大、北京大学、CMU、清华大学等国内外知名高校,以及蔚小理、地平线、华为、大疆等头部公司,形成了前沿技术聚集地[17] 社区资源与技术覆盖范围 - 社区汇总了近40个开源项目、近60个自动驾驶相关数据集及主流仿真平台,技术学习路线全面覆盖感知、规划控制、仿真、端到端、VLA等核心方向[18][35][37] - 针对热点技术领域如3DGS与NeRF、世界模型、视觉语言模型(VLM)、自动驾驶VLA、扩散模型、BEV感知等,社区均进行了详细的技术梳理和内容汇总[42][44][47][49][53][55] - 社区提供原创直播课程与系列视频教程,内容涵盖感知融合、多传感器标定、SLAM、决策规划、数据工程、端到端与大模型技术等,并建立了与多家自动驾驶公司的岗位内推机制[12][13] 社区互动与专业交流 - 社区内部定期与学术界、工业界专家畅聊技术趋势与量产痛点,并举办超过一百场专业直播分享,内容涉及VLA模型、V2X、3D检测、轨迹生成等前沿话题[7][92] - 成员可自由提问并获得解答,问题范围包括研究方向选择、就业前景分析、技术路线图求取以及企业内部推荐机会,形成了良好的学习交流与求职对接环境[6][21][94]
工业界和学术界都在怎么搞端到端和VLA?
自动驾驶之心· 2025-10-17 08:03
端到端自动驾驶技术趋势 - 端到端算法是当前自动驾驶量产的核心算法,技术栈丰富,业内主要存在一段式和两段式两大类范式 [1] - 一段式范式以UniAD为代表,直接从传感器输入建模自车轨迹输出,而二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 一段式端到端算法可进一步延伸出基于感知、扩散模型、世界模型以及视觉语言模型(VLA)等多种子领域,尤其是基于VLA的算法相关论文正爆发式发表,工业界也在争先量产 [1] 自动驾驶VLA与大模型技术 - 核心算法涉及BEV感知、视觉语言模型(VLM)、扩散模型、强化学习、世界模型等,代表了学术界和工业界最前沿的技术方向 [3] - 自动驾驶VLA与大模型实战课程聚焦VLA领域,内容涵盖从VLM作为自动驾驶解释器,到模块化VLA、一体化VLA,以及当前主流的推理增强VLA [3] - 课程配套理论基础梳理,包括Vision/Language/Action三大模块、强化学习、扩散模型等,并设有大作业章节指导从零搭建VLA模型及数据集 [3] 课程师资与团队 - 课程教师团队包括来自清华大学等顶尖院校的研究人员,在ICCV、IROS、EMNLP等国际顶级会议发表多篇论文,研究方向涵盖多模态感知、自动驾驶VLA、大模型Agent等前沿领域 [8][11] - 教师团队具备丰富的自动驾驶、大模型研发和实战经验,例如有教师主持完成多项自动驾驶感知和大模型框架工具,其维护的开源项目总Star数超过2k [8] - 工业界教师团队包括来自国内顶级主机厂的算法专家,拥有CCF-A/B论文发表记录,并主持完成多项自动驾驶感知和端到端算法的产品量产交付,具备丰富的端到端算法研发经验 [12][14] 端到端自动驾驶课程内容 - 端到端与VLA自动驾驶课程由工业界专家带队,聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础 [12] - 课程详细讲解BEV感知、大语言模型、扩散模型和强化学习等关键技术 [12] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法 [12] 课程参与要求 - 参与者需要自备GPU,推荐算力在RTX 4090及以上 [15] - 参与者需具备一定的自动驾驶领域基础,熟悉自动驾驶基本模块,并了解transformer大模型、强化学习、BEV感知等技术的基本概念 [17] - 参与者需具备一定的概率论和线性代数基础,熟悉常用数学运算,并具备一定的Python和PyTorch语言基础 [17]