BEV感知

搜索文档
用QA问答详解端到端落地:[UniAD/PARA-Drive/SpareDrive/VADv2]
自动驾驶之心· 2025-08-30 00:03
端到端自动驾驶模型分类 - 端到端模型分为完全黑盒OneNet和模块化端到端两种类型 其中模块化端到端通过感知 预测和规划模块间的feat-level/query-level交互减少误差累积 [3] UniAD框架架构 - UniAD框架包含Backbone Perception Prediction和Planner四个模块 输入多视角相机图像 Backbone提取BEV特征 Perception完成场景级感知 Prediction基于时序和场景交互进行多模态轨迹预测 Planner基于预测轨迹和BEV特征规划路径 各模块均采用Query+Transformer结构实现信息交互 [4] TrackFormer模块设计 - TrackFormer的query由检测query 跟踪query和ego query三部分组成 检测query用于识别新目标 跟踪query动态变化以匹配目标消失 推理过程采用BEVFormer检测新目标并将当前检测query合并到下一时刻跟踪query集合中 通过QIM模块与历史track query进行MHA交互获取时序信息 [6] MotionFormer交互机制 - MotionFormer包含三种交互类型:agent-agent(动态agent间交互) agent-map(静态地图交互) agent-goal(目标轨迹交互) motion query由目标点位置 上下文信息 当前位置及先验位置信息五部分组成 输出多模态轨迹 训练损失包含轨迹点距离和物理约束 [10] OccFormer结构特点 - OccFormer采用类RNN结构 以历史场景特征和稀疏agent特征为输入 通过pixel-agent interaction的mask cross-attention机制 使场景特征聚焦于局部相关agent信息 最终输出包含agent ID的占用网格 [9][11] PARA-Drive并行化改进 - PARA-Drive基于UniAD模块重构连接方式 所有子模块采用并行同步协同训练 仅通过更新的BEV query实现模块间联系 测试时可移除Map/Motion/Occ模块提升推理速度 [13] Panoptic SegFormer分割技术 - 通过多尺度特征融合(s8/s16/s32)作为encoder输入 decoder分两步:第一步用DETR方式精炼query并引入目标检测监督 第二步通过cross-attention进一步优化query 输出统一尺寸的特征进行掩码和类别预测 [14][15] SpareDrive稀疏感知架构 - 包含图像编码器 对称稀疏感知和运动规划三部分 图像编码器提取多视角多尺度2D特征 对称稀疏感知并行处理agent检测和地图任务 agent检测采用DETR范式 结合时序与非时序decoder 地图任务使用polyline anchor表示道路结构 [17][20] VADv2规划模块设计 - planning transformer输入包括规划token 场景token和导航token 通过交互输出动作概率 规划token通过最远距离采样从人类驾驶数据中提取代表性动作轨迹 训练使用真实动作概率约束和轨迹冲突损失 [23] 运动规划层级选择机制 - 包含自车实例初始化 时空交互和层级规划选择三部分 时空交互聚焦实例级历史交互 输出多轨迹和多规划方案 层级选择先根据驾驶命令筛选轨迹 再结合周围agent预测计算碰撞风险 最终输出最高分轨迹 [25]
公司通知团队缩减,懂端到端的留下来了。。。
自动驾驶之心· 2025-08-20 07:32
行业技术趋势 - 自动驾驶行业正从模块化方法转向端到端系统 实现传感器输入到车辆规划的直接建模 减少误差累积[2] - BEV感知技术打破模块化壁垒 在统一视角下实现技术跃迁[2] - 端到端自动驾驶需融合多模态大模型、BEV感知、强化学习、视觉Transformer及扩散模型等多领域技术[5] 技术发展现状 - UniAD统一感知和规划任务 首次实现多模块单模型运行 标志端到端时代来临[2] - 端到端技术发展出多方向:二段式(如PLUTO)、基于感知的一段式(如UniAD)、基于世界模型(如OccWorld)、基于扩散模型(如DiffusionDrive)及VLA范式[9] - 扩散模型应用于多模轨迹预测 提升对不确定环境的适应性 代表工作包括DiffusionDrive、Diffusion Planner及DiffE2E[17] 技术挑战与需求 - 端到端技术学习面临多领域知识碎片化、论文数量繁多、缺乏高质量文档及系统实战指导等挑战[5] - 行业要求算法工程师具备多技能融合能力 需同时掌握算法规则、感知决策及端到端与VLA等新技术[2] - VLA作为端到端自动驾驶的皇冠技术 上限高且难度大 成为学术界和工业界研发重点 招聘需求旺盛[20] 技术应用与突破 - 世界模型技术应用广泛 涵盖场景生成、端到端及闭环仿真 代表工作包括Drive-OccWorld和OccLLaMA[15] - VLA技术融合VLM、BEV、扩散模型及强化学习 前沿工作包括小米ORION、OpenDriveVLA及ReCogDrive[20] - RLHF技术应用于VLA算法微调 具备良好延展性 支持预训练和强化学习模块搭建[21] 工业界实践 - 主机厂算法专家主导端到端、大模型及世界模型等前沿算法预研与量产 完成多项自动驾驶产品交付[22] - 行业资源向端到端与多模态大模型攻坚集中 但仍需规则算法兜底 反映技术过渡期特点[2] - 小米ORION截至2025年7月开源推理和评测模块 推动VLA技术透明化与行业应用[20]
端到端VLA的起点:聊聊大语言模型和CLIP~
自动驾驶之心· 2025-08-19 15:20
大语言模型技术发展 - 大语言模型近五年发展迅速,Transformer架构是核心技术基础 [3][5][7] - Transformer核心模块包括注意力机制和多头注意力,通过8个head增强编解码能力 [11][12] - 位置编码采用正弦/余弦函数实现顺序表征,公式为PE(pos,2i)=sin(pos/10000^(2i/d_model)) [9][13] - BPE分词算法通过合并高频字符逐步构建词表,流程包括统计频次、迭代合并等步骤 [8][13] 视觉与语言模型对齐技术 - CLIP是视觉与大模型对齐的典型代表,实现跨模态特征匹配 [18] - 多模态技术栈涵盖BEV感知、扩散模型、强化学习等方向 [48] - VLA(Vision-Language-Action)成为自动驾驶前沿方向,整合VLM、BEV和强化学习技术 [50] 端到端自动驾驶课程体系 课程结构 - 第一章概述端到端发展史,对比模块化与端到端范式差异 [40] - 第二章重点讲解大语言模型、BEV感知、扩散模型等关键技术 [41][48] - 第三章分析二段式端到端方案,涵盖PLUTO、CarPlanner等经典算法 [42] - 第四章深入一段式端到端,包括UniAD、DiffusionDrive等前沿工作 [43][47] - 第五章设置RLHF微调实战,强化VLA技术迁移能力 [52] 技术亮点 - 覆盖CVPR'25最新成果CarPlanner和AAAI'25世界模型Drive-OccWorld [42][45] - 实战项目包括Diffusion Planner和ORION开源框架复现 [47][50] - 课程目标使学员达到1年经验算法工程师水平,掌握40-70K岗位核心技术 [31][57] 行业应用与人才需求 - VLA算法专家岗位薪资达40-70K-15薪,需求集中在3-5年经验硕士 [31] - 技术栈要求涵盖多模态大模型、BEV感知、模型量化部署等方向 [34][48] - 主机厂加速布局端到端量产方案,推动世界模型、扩散模型等技术落地 [26][50]
自动驾驶之心项目与论文辅导来了~
自动驾驶之心· 2025-08-07 20:00
自动驾驶之心项目与论文辅导 - 项目正式推出自动驾驶领域论文辅导服务 旨在解决学生在研究过程中遇到的环境配置 创新点实现 模型调试等疑难问题 [1] - 过往辅导成果显著 部分学员成功在CVPR ICRA等顶级会议发表论文 [1] - 2024年计划扩大辅导规模 目标助力更多学员冲击顶会 [1] 主要辅导方向 方向1:多模态与计算机视觉 - 覆盖端到端自动驾驶 BEV感知 大模型等前沿技术领域 [2][3] - 辅导老师为华为天才少年计划入选者 在CVPR/ICCV/ECCV/NIPS等顶会发表论文30+篇 总引用量超6000次 [3] - 学术指导经验丰富 曾指导博士生在CCF-A类顶会顶刊以一作/共一身份发表7篇论文 [3] 方向2:3D视觉技术 - 聚焦图像/点云数据的3D目标检测 语义分割 占据预测等多任务研究 [4][5] - 辅导老师来自国内TOP2高校 在ECCV CVPR等会议有多次论文发表记录 [5] 方向3:自动驾驶感知架构 - 研究领域包含OCC 世界模型 BEV等自动驾驶核心感知方案 [6] - 辅导团队参与多个主流感知方案开发 成员均来自国内TOP2高校 在CVPR ECCV等会议有论文发表 [6] 方向4:神经渲染与重建 - 涉及NeRF 3D Gaussian Splatting等三维重建技术 [7] - 辅导老师以第一作者发表4篇CCF-A类论文(含2篇CVPR和2篇IEEE Trans) [7] - 另有导师在CVPR ICCV ICML TPAMI等期刊会议发表多篇论文 学术背景覆盖国内外顶尖高校(QS200/国内TOP100) [7] 合作方式 - 提供个性化论文辅导服务 具体细节需通过指定微信号(wenyirumo)咨询 [7] - 咨询时需备注"论文辅导"以获取定向服务 [8]
面试了很多端到端候选人,还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-20 16:36
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可冲击百万年薪 [2] - 核心优势在于直接从传感器输入到车辆规划/控制信息的直接建模 避免了传统模块化方法的误差累积 BEV感知技术实现了模块间的统一视角 [2] - UniAD模型统一了感知和规划任务 标志着端到端时代的来临 但并非最终解决方案 后续涌现出多种技术流派 [2][4] 主要技术流派 - **二段式端到端**:以PLUTO为代表 专注于用模型实现自车规划 [4] - **一段式端到端**: - 基于感知的方法:以UniAD为代表持续发展 [4] - 基于世界模型的方法:以OccWorld为代表开创新流派 [4] - 基于扩散模型的方法:以DiffusionDrive为代表实现多模轨迹预测 [4] - **VLA方向**:大模型时代下的端到端新方向 结合视觉语言模型技术 [4][22] 行业应用与人才需求 - VLA/VLM大模型算法专家岗位薪资达40-70K*15薪 博士应届生可达90-120K*16薪 [9] - 技术岗位覆盖感知算法、模型量化部署等多方向 实习岗位日薪220-400元 [9] - 主机厂已开展端到端算法预研和量产交付 形成完整技术落地闭环 [25] 技术发展挑战 - 需同时掌握多模态大模型、BEV感知、强化学习、扩散模型等跨领域知识 [14] - 论文数量繁多且知识碎片化 缺乏系统性学习框架和实战指导 [14] - 高质量文档稀缺 提高了技术入门门槛 [14] 课程体系设计 - **知识框架**:覆盖BEV感知、扩散模型理论、强化学习与RLHF等核心技术栈 [6][23] - **案例研究**: - 二段式端到端解析PLUTO、CarPlanner等经典算法 [21] - 一段式端到端深入UniAD、OccLLaMA等前沿工作 [22] - **实战环节**: - 扩散模型轨迹预测实战Diffusion Planner [22] - VLA方向实战小米ORION开源框架 [22] - 大作业RLHF微调实现技术迁移应用 [24] 技术发展趋势 - 世界模型应用扩展至场景生成、闭环仿真等多场景 成为近年研究热点 [22] - 扩散模型与VLM结合推动多模轨迹预测技术落地 [22] - VLA被视为端到端自动驾驶的"皇冠" 工业界招聘需求旺盛 [22]
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 21:18
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可达百万年薪 [2] - 端到端系统实现从传感器输入到车辆规划/控制信息的直接建模 避免模块化方法间的误差累积 BEV感知打通模块化壁垒 UniAD统一感知和规划任务 [2] - 学术界和工业界聚焦端到端技术 衍生出多种算法流派 UniAD并非最终解 新算法不断涌现 [2] 端到端技术发展现状 - 技术方向包括多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂 论文数量繁多 知识碎片化 [4] - 高质量文档缺乏 提高入门难度 学习目标驱动导航需结合实战 但缺乏系统指导 难以从理论过渡到实践 [4] - 最新技术流派包括:PLUTO为代表的二段式端到端 UniAD为代表的基于感知的一段式端到端 OccWorld为代表的基于世界模型的一段式端到端 DiffusionDrive为代表的基于扩散模型的一段式端到端 [9] 端到端课程体系 - 课程特点:直击痛点快速入门 构建领域框架提升研究能力 理论结合实践学以致用 [5][6][7] - 课程大纲:端到端算法介绍 背景知识 二段式端到端 一段式端到端与VLA 课程大作业 [11][12][13][15] - 重点章节:一段式端到端与VLA为课程精华 涵盖基于感知/世界模型/扩散模型/VLA的四大子领域 [13] 技术深度解析 - 二段式端到端:分析PLUTO CarPlanner Plan-R1等经典与前沿工作 对比一段式优缺点 [12] - 一段式端到端:UniAD和VAD为奠基作 PARA-Drive为最新进展 世界模型应用广泛 扩散模型实现多模轨迹预测 VLA为当前技术皇冠 [13] - 关键技术:Transformer CLIP LLAVA BEV感知 扩散模型 RLHF GRPO等构成完整技术栈 [14] 课程实施细节 - 开课时间8月15日 三个月完成 采用离线视频教学+VIP群答疑+三次线上答疑模式 [20] - 学员需自备4090及以上GPU 具备自动驾驶基础 熟悉Transformer 强化学习 BEV感知等技术概念 [22] - 预期成果:达到1年经验算法工程师水平 掌握端到端技术框架 可复现主流算法 应用于实际项目 [22]
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-10 20:40
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 自UniAD获得CVPR Best Paper后 国内智驾军备竞赛加速 理想汽车2024年宣布E2E+VLM双系统架构量产 [2] - 端到端技术通过传感器数据直接输出规划或控制信息 避免了模块化方法的误差累积 BEV感知和UniAD统一了感知与规划任务 推动技术跃迁 [2] - 当前技术栈涉及多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂且知识碎片化 [3] 技术课程核心内容 - 课程直击学习痛点 采用Just-in-Time Learning理念 通过案例快速掌握核心技术栈 [4] - 构建端到端自动驾驶研究框架 帮助学员分类论文 提取创新点 形成研究体系 [5] - 理论结合实践 涵盖PLUTO(二段式) UniAD(一段式感知) OccWorld(世界模型) DiffusionDrive(扩散模型) VLA(大模型)等主流技术 [6] 课程大纲与关键技术 - 第一章概述端到端发展历史 模块化到端到端的演变 一段式 二段式 VLA范式优缺点及工业界应用 [8] - 第二章重点讲解背景知识 包括VLA涉及的大语言模型 扩散模型 强化学习 以及BEV感知 为未来两年高频面试技术 [8][9] - 第三章聚焦二段式端到端 分析PLUTO CarPlanner Plan-R1等工作的优缺点 [9] - 第四章深入一段式端到端与VLA 涵盖UniAD PARA-Drive(感知) Drive-OccWorld OccLLaMA(世界模型) DiffusionDrive DiffE2E(扩散模型) ORION OpenDriveVLA ReCogDrive(VLA)等前沿工作 [10] - 第五章大作业为RLHF微调实战 涉及预训练和强化学习模块搭建 可迁移至VLA算法 [12] 行业趋势与人才需求 - VLM/VLA成为招聘刚需 3-5年经验可冲击百万年薪 技术上限高且工业界需求旺盛 [2][10] - 扩散模型与VLA结合成为热点 多模轨迹预测适应自动驾驶不确定性环境 多家公司尝试落地 [10] - 主机厂加速布局端到端算法预研和量产 如小米ORION等开源项目推动技术发展 [10][13]