Workflow
陪伴式FOF组合
icon
搜索文档
组合月报202512:行业轮动ETF年内收益50%,超额22%-20251203
中信建投· 2025-12-03 16:15
量化模型与构建方式 1. 模型名称:基于宏观状态识别的多资产配置模型 - **模型构建思路**:借鉴美林时钟思路,通过宏观因子识别市场状态,采用马尔可夫转移模型识别宏观状态,构建动态风险预算组合[33] - **模型具体构建过程**: 1. 构建综合增长因子和综合通胀因子来挖掘股票投资价值[34] 2. 增长因子考虑PMI、工业增加值、社会消费品零售总额、固定资产投资完成额和出口金额5个指标[34] 3. 通胀因子考虑CPI和PPI2个指标[34] 4. 采用流动性因子(M1同比)用于债市风险监控[34] 5. 采用ERP(股权风险溢价)、EP(1/PE)和BP(1/PB)指标构建股债性价比因子[34] 6. 通过美元指数、央行购金和汇率等因素构建黄金投资因子[34] 7. 采用多目标优化模型进行业绩增强,将资产动量纳入考量,构建目标波动率为5%、10%和15%的稳健、平衡和积极组合[37] 8. 限制黄金、美股和港股的投资比例上限为10%,并根据宏观状态信号动态月度调整风险预算[37] 2. 模型名称:六维度行业轮动模型 - **模型构建思路**:在月频进行轮动,涵盖宏观、财务、分析师预期、ETF份额变动,公募基金/优选基金仓位动量、事件动量多个维度[39] - **模型具体构建过程**: 1. 宏观维度刻画行业的经济周期动量效应[39] 2. 财务维度从三大报表出发优选财务状况较好的行业[39] 3. 分析师预期维度展示分析师预期边际上调的行业动量效应[39] 4. ETF份额变动逻辑为超卖行业ETF反转[39] 5. 公募基金/优选基金仓位动量刻画公募基金/优选基金重仓行业的动量效应[39] 6. 事件动量效应的逻辑是事件发生时的市场惯性(非线性行业动量)[39] 3. 模型名称:陪伴式偏股增强FOF组合模型 - **模型构建思路**:构建以Alpha为主、拥挤度为辅的动态多因子选基模型,通过季度调整选基金因子与权重进行组合优化[46] - **模型具体构建过程**: 1. 基金初选池筛选条件为:成立满2年3个月;近2年平均股票仓位不低于60%的普通股票型、偏股混合型、灵活配置型、平衡混合型;基金规模不低于2亿元;任期最长的在任基金经理至少任职满1年;剔除定开和持有期基金[46] 2. 因子优选以Alpha类因子为主、拥挤度因子为辅,各调仓日筛选过去两年IC、IR表现较好的因子分配剩余权重[46] 3. 组合构建时,每期根据复合因子值大小取前30只基金加权构建FOF组合,季度末调仓[46] 4. 模型名称:陪伴式宽基增强FOF组合模型 - **模型构建思路**:构建相对宽基指数的主动权益增强策略,控制组合相对基准的行业板块暴露和市值风格暴露以控制跟踪误差,最大化组合的复合因子得分[53] - **模型具体构建过程**: 1. 单只基金复合因子计算基于Alpha为主、拥挤度为辅的动态多因子选基模型[53] 2. 优化模型如下: $$max\sum_{i=1}^{N}f_{i}\times w_{i}\quad\text{s.t.}\quad\left|\sum_{i}w_{i}\times\beta_{ij}-B_{j}\right|\leq k_{1},\ \ \left|\sum_{i}w_{i}\times p_{ij}-P_{j}\right|\leq k_{2},\ \ \sum_{i}w_{i}=1,\ \ 0\leq w_{i}\leq w_{max}.$$ 其中,$$f_i$$为基金i的复合因子得分,$$w_i$$为组合对基金i的配置权重,$$\beta_{ij}$$为基金i对板块j的配置权重,$$B_j$$为基准对板块j的配置权重,$$k_1$$为组合的板块偏离度上限,$$p_{ij}$$为基金i对市值j的配置权重,$$P_j$$为基准对市值j的配置权重,$$k_2$$为组合的风格偏离度上限,$$w_{max}$$为单只基金最高配置权重[53] 3. 季度末调仓[53] 5. 模型名称:长期能力因子模型 - **模型构建思路**:基于Brinson模型,结合行业指数以及主动权益基金视角,构造行业择时三层业绩分解模型,将基金超额收益拆分为交易、选股、行业配置和择时四个分项[64] - **模型具体构建过程**: 1. 引入风格因素,将基金超额收益中的选股以及配置项从行业和风格两个角度进行分解,引入交叉项,分解成行业选股、行业收益、风格选股、风格收益、行业-风格选股和行业-风格收益八个分项[64] 2. 对因子构造施加基于公募主动权益基金抱团热度的因子择时信号,当抱团因子处于前30%分位点以下时,修改行业配置为行业-风格配置因子,加入风格选股因子;当抱团程度过热(前20%分位点)时,不使用选股因子[65] 3. 将交易倾向因子作为负向筛选指标加入,在市场交易热度上升时给予交易因子更高权重,降温时给予低权重[65] 4. 半年度调仓,剔除不可申赎基金[65] 6. 模型名称:KF-Alpha+交易FOF组合模型 - **模型构建思路**:对基金季报持仓进行猜测补全,在季度层面实现业绩拆分;基于卡尔曼滤波的行业测算,通过基金业绩-高精度估算净值构造基金KF-Alpha因子,体现基金行业内选股能力[70] - **模型具体构建过程**:通过更高频的季度层面数据,构造KF-Alpha+季度交易能力的基金组合[70] 7. 模型名称:五层递补可交易指数轮动策略 - **模型构建思路**:在行业轮动组合基础上,构建5层递补可交易指数轮动策略,解决某些行业交易量小或跟踪指数少导致的规划求解困难[77] - **模型具体构建过程**: 1. 第一层:原始规划求解方法,给定5行业不变,备选池为全体指数[77] 2. 第二层:根据指数持仓,将全市场成交规模较高行业和预期收益较高行业交叉保留强势行业[77] 3. 第三层:根据指数持仓,在给定5行业中剔除全体指数共同持仓较少行业[77] 4. 第四层:估算仓位法规划求解[77] 5. 第五层:持仓对比法求解[77] 6. 标的池选择成立超过24个月的ETF,月频调仓[77] 8. 模型名称:多层次主动权益基金池体系 - **模型构建思路**:构建涵盖各个赛道和风格优秀基金的选基工具箱,以定量评分为主,辅以定性验证[87] - **模型具体构建过程**: 1. 风格划分基于基金价值和成长因子的绝对标签和相对得分,将主动权益基金分为深度价值、价值、价值成长、均衡成长、成长五大类[88] 2. 行业配置方面,将满足一定行业配置特点的基金划分为六大板块赛道基金、行业均衡基金、中观配置基金[88] 3. 对基金评价业绩指标进行检验,指标区间包含6个月、1年和2年,选取相对有效的因子构建基金评价指标体系,包含收益指标、风险调整收益指标、风险指标、投资能力指标、持有体验指标和规模指标六大类[88] 4. 每个季度末和半年报/年报披露的月末进行更新[87] 模型的回测效果 1. **全球配置ETF组合**,近一月绝对收益-0.02%,年初以来绝对收益7.85%[30] 2. **行业轮动模型**,近一月绝对收益-0.81%,近一月超额收益(相对行业等权)0.09%,年初以来绝对收益42.93%,年初以来超额收益18.97%[30] 3. **陪伴式偏股增强FOF**,近一月绝对收益-2.76%,近一月超额收益(相对万得偏股)-0.31%,年初以来绝对收益23.94%,年初以来超额收益-5.29%[30] 4. **陪伴式300增强FOF**,近一月绝对收益-2.66%,近一月超额收益(相对沪深300)-0.20%,年初以来绝对收益20.16%,年初以来超额收益5.12%[30] 5. **陪伴式800增强FOF**,近一月绝对收益-2.08%,近一月超额收益(相对中证800)0.81%,年初以来绝对收益17.56%,年初以来超额收益0.55%[30] 6. **风格轮动基金组合**,近一月绝对收益-2.36%,近一月超额收益(相对主动权益基金)-0.47%,年初以来绝对收益16.28%,年初以来超额收益-5.87%[30] 7. **长期能力组合**,近一月绝对收益-3.44%,近一月超额收益(相对主动权益基金)-1.57%,年初以来绝对收益23.91%,年初以来超额收益0.30%[30] 8. **KFAlphaFOF组合**,近一月绝对收益-2.63%,近一月超额收益(相对万得偏股)-0.18%,年初以来绝对收益24.72%,年初以来超额收益-3.49%[32] 9. **行业轮动基金组合**,近一月绝对收益-1.97%,近一月超额收益(相对主动权益基金)-0.07%,年初以来绝对收益52.17%,年初以来超额收益23.18%[32] 10. **行业轮动ETF组合**,近一月绝对收益-0.76%,近一月超额收益(相对万得全A)1.50%,年初以来绝对收益50.22%,年初以来超额收益21.56%[32] 11. **长期能力因子组合**,全时段年化收益15.82%,相对基准超额年化收益8.37%,信息比1.04[71] 12. **风格轮动FOF组合**,全时段年化收益17.37%,相对基准超额年化收益9.42%,信息比1.15[72] 13. **KF-Alpha+交易FOF组合**,全时段年化收益16.14%,相对基准超额收益8.16%,信息比1[73] 14. **行业轮动基金组合**,全时段年化收益22.74%,相对基准超额收益14.84%,信息比1.22[78] 15. **行业轮动ETF组合**,全时段年化收益22.74%,相对基准超额收益17.79%,信息比1.72[78] 16. **多维复合行业轮动策略**,2012年以来多头年化收益28%,年化超额行业等权18.1%,月度超额胜率70%;2019年以来年化超额行业等权40.12%,月度胜率75%[42] 17. **全球配置ETF组合(目标波动率5%)**,2025年以来收益约6.6%,2011-2025年的年度收益胜率为93%[38] 量化因子与构建方式 1. 因子名称:宏观因子(增长因子、通胀因子、流动性因子、黄金因子等) - **因子构建思路**:通过宏观层面的经济增长、通胀、流动性、货币政策、美元指数、汇率、央行购金等指标及因子,识别宏观状态,评估资产配置价值[33][34] - **因子具体构建过程**: 1. **增长因子**:考虑PMI、工业增加值、社会消费品零售总额、固定资产投资完成额和出口金额5个指标[34] 2. **通胀因子**:考虑CPI和PPI2个指标[34] 3. **流动性因子**:采用M1同比来衡量,用于债市风险监控[34] 4. **股债性价比因子**:采用ERP(股权风险溢价指标)、EP(1/PE)和BP(1/PB)指标构建,监控股市极端情况[34] 5. **黄金因子**:通过美元指数、央行购金和汇率等因素构建,衡量黄金的动态配置价值[34] 2. 因子名称:行业轮动子维度因子 - **因子构建思路**:从宏观、财务、分析师预期、ETF份额变动,公募基金/优选基金仓位动量、事件动量多个维度构建行业轮动因子[39] - **因子具体构建过程**: 1. **宏观维度因子**:刻画行业的经济周期动量效应[39] 2. **财务维度因子**:从三大报表出发优选财务状况较好的行业[39] 3. **分析师预期因子**:展示分析师预期边际上调的行业动量效应[39] 4. **ETF份额变动因子**:逻辑为超卖行业ETF反转[39] 5. **公募基金/优选基金仓位动量因子**:刻画公募基金/优选基金重仓行业的动量效应[39] 6. **事件动量因子**:逻辑是事件发生时的市场惯性(非线性行业动量)[39] 3. 因子名称:选基金复合因子(Alpha类因子、拥挤度因子) - **因子构建思路**:以Alpha类因子为主、拥挤度因子为辅,动态调整选基金因子与权重[46] - **因子具体构建过程**:各调仓日筛选过去两年IC、IR表现较好的因子分配剩余权重,构建复合因子[46] 4. 因子名称:长期能力因子(择时、交易、配置等) - **因子构建思路**:基于Brinson模型和业绩分解模型,结合风格因素,从选股和择时角度构建长期能力因子[64] - **因子具体构建过程**: 1. 构造行业择时三层业绩分解模型,将基金超额收益拆分为交易、选股、行业配置和择时四个分项[64] 2. 引入风格因素,将基金的选股和配置超额收益从行业和风格两个角度进行分解,引入交叉项,分解成行业选股、行业收益、风格选股、风格收益、行业-风格选股和行业-风格收益八个分项[64] 3. 引用经典的H-M和T-M模型计算基金的择时能力[64] 4. 最终构建的长期能力选基金因子包含TM模型构造的择时项以及业绩分解模型构造的行业配置和交易两项[64] 5. 因子名称:KF-Alpha因子 - **因子构建思路**:基于卡尔曼滤波的行业测算,通过基金业绩-高精度估算净值构造,更好体现基金行业内选股能力[70] - **因子具体构建过程**:对基金季报持仓进行猜测补全,在季度层面实现业绩拆分,构造KF-Alpha因子[70] 6. 因子名称:基金评价指标体系因子 - **因子构建思路**:对常用的基金评价业绩指标进行检验,选取相对有效的因子构建基金评价指标体系[88] - **因子具体构建过程**:指标体系包含收益指标、风险调整收益指标、风险指标、投资能力指标、持有体验指标和规模指标六大类,评价时间维度为近2年[88] 因子的回测效果 1. **长期能力因子**,全时段年化收益15.82%,相对基准超额年化收益8.37%,信息比1.04[71] 2. **风格轮动因子(结合长期能力因子)**,全时段年化收益17.37%,相对基准超额年化收益9.42%,信息比1.15[72] 3. **KF-Alpha+交易因子**,全时段年化收益16.14%,相对基准超额收益8.16%,信息比1[73] 4. **行业轮动多维度因子**,2012年以来应用该因子的策略年化收益28%,年化超额行业等权18.1%,月度超额胜率70%;2019年以来年化超额行业等权40.12%,月度胜率75%[42] 5. **基金评价综合得分因子(风格池内)**,长期来看,各风格池内综合得分排名靠前基金整体表现均跑赢中证偏股;成长风格基金在2015年、2019-2020年业绩弹性突出;2022-2024年价值风格占优[90] 6. **基金评价综合得分因子(赛道池内)**,医药、TMT、周期板块优选基金表现突出,年内优选基金分别上涨50.82%、44.27%、37.68%,相对全部赛道基金有超额[97] 7. **基金优选池综合因子**,长期相较于万得偏股基金指数和沪深300取得超额收益;单年度业绩均跑赢万得偏股基金指数;2019-2023年均跑赢沪深300[102]