ArtGS框架

搜索文档
ArtGS:3DGS实现关节目标精准操控,仿真/实物双验证性能SOTA!
具身智能之心· 2025-07-04 17:48
研究背景与出发点 - 关节目标操作是机器人领域的关键挑战,核心难点在于复杂的运动学约束和现有方法有限的物理推理能力 [3] - 传统方法如端到端强化学习或模仿学习需要大量数据但常因缺乏物理知识导致动作违反约束 [3] - 3D视觉方法如GAMMA、RPMArt存在点云稀疏性、无序性和时间一致性不足的问题 [3] - 提出ArtGS框架通过扩展3D高斯溅射整合视觉-物理建模,优化关节骨骼参数保证物理一致性 [3] 核心框架与技术细节 - ArtGS包含三个关键模块:静态高斯重建、VLM基于骨骼推理、动态3D高斯关节建模 [4] 静态3D高斯重建 - 通过3D高斯溅射从多视图RGB-D图像重建高保真3D场景,场景表示为3D高斯球集合 [5] - 利用URDF文件和改进的Denavit-Hartenberg正运动学构建变换矩阵控制高斯点运动 [5] VLM基于骨骼推理 - 借助微调的视觉-语言模型InternVL-2.5-4B初始化关节参数估计 [6] - 通过3DGS新视图合成能力生成目标正视图辅助VLM输出视觉问答结果 [6] - 对旋转关节和移动关节分别采用PCA和边界框叉积方法估计初始关节参数 [8][9] 动态3D高斯关节建模 - 通过阻抗控制实现机械臂与环境的交互,结合微分渲染优化关节参数 [10] - 高斯点的均值和旋转因子通过线性混合蒙皮变换到关节空间 [10] - 通过最小化包含L1损失、结构相似性损失和正则化项的损失函数优化关节参数 [10] 实验验证与结果分析 关节参数估计 - ArtGS在关节轴误差和关节原点误差上显著低于ANCSH、GAMMA、Ditto等方法 [12] - 例如在洗碗机上ArtGS的AE为3.01°、OE为2.17cm,远低于ANCSH的15.32°和9.26cm [13] 关节目标操作 - 模拟环境中ArtGS操作成功率达62.4%-90.3%,显著高于TD3的3.1%-6.6%和Where2Act的8.4%-11.2% [14][15] - 真实世界实验中ArtGS对抽屉操作成功率达10/10,对柜子达9/10 [17] 关键能力验证 - ArtGS能通过3DGS可微分渲染优化参数,即使VLM初始轴估计误差超过20°仍能提升操作成功率 [19] - 具备跨机械臂适应性,能精确重建Franka、xArm7等不同机械臂 [19] 总结与展望 - ArtGS将3D高斯溅射转化为关节目标的视觉-物理模型,提升优化效率并解决遮挡问题 [20] - 未来方向将扩展至更复杂场景,提升对多关节、高动态目标的建模与操作能力 [21]