Workflow
多模态系统
icon
搜索文档
DeepMind哈萨比斯最新认知都在这里了
量子位· 2025-09-15 13:57
文章核心观点 - 谷歌DeepMind CEO哈萨比斯认为AGI将在未来十年内实现 并开启科学的黄金时代和新文艺复兴 在能源 健康等领域带来巨大益处 [2][7][51] - 当前AI系统仍存在关键瓶颈 包括缺乏真正的创造力 无法提出新假设 以及在某些领域表现优异但其他方面犯简单错误 [4][5][33] - 实现AGI需突破多模态理解 世界模型构建和持续学习能力等核心技术障碍 [6][21][36] DeepMind战略定位与团队规模 - DeepMind与谷歌完成合并 整合Alphabet所有AI团队 成为谷歌和Alphabet的"发动机舱" 负责构建核心Gemini模型及视频模型 交互式世界模型等多种AI模型 [15] - 团队规模约5000人 其中80%以上为工程师和博士研究员 约有三四千名顶尖技术人才 [16] - 模型已全面接入谷歌生态 包括Workspace和Gmail等全线产品 每日服务数十亿用户通过AI概览 AI模式或Gemini应用进行交互 [15] 世界模型技术突破 - Genie 3世界模型通过分析数百万段YouTube等平台视频 自主推导现实世界运行逻辑 能即时生成可交互的沉浸式环境 [17][19] - 模型无需预编程物理规则 仅通过观察学习即掌握光影反射 物体运动等复杂原理 生成持续一两分钟的高度一致性交互场景 [19][20] - 技术突破点在于实现逆向工程学习物理规律 生成范围远超人类活动 包括操控沙滩小狗或与水母互动等多元世界模拟 [19] 机器人技术发展路径 - 采用"安卓模式"战略 打造跨机器人的通用操作系统层 同时探索垂直整合 将最新模型与特定机器人类型深度结合 [25] - 人形机器人对日常任务极具价值 因人类环境基于人体工学设计 但专用机器人形态在工业等领域仍有不可替代性 [26][27] - 当前处于类似70年代PC初期阶段 未来两三年将实现算法突破 关键挑战在于硬件规模化时机选择 需平衡成熟度与量产需求 [28][29] AGI核心能力缺失与衡量标准 - 当前AI缺乏真正创造力 无法像爱因斯坦提出狭义相对论那样实现直觉飞跃或类比推理 [33][34] - 真正AGI需在所有领域保持博士级表现 而非仅在某些领域优异 同时需具备持续学习能力以实时吸收新知识 [35][36] - 关键测试包括给AI设置1901年知识截止点 检验其能否提出类似1905年爱因斯坦的创新理论 [34] 创意工具变革与行业影响 - Nano Banana等工具的核心优势在于惊人一致性 能理解指令并保持其他元素不变 实现高效迭代 [14][38] - 工具双轨赋能:降低大众创作门槛 同时为顶级创作者提供十倍百倍效率提升 但输出质量仍依赖使用技巧和审美素养等专业因素 [38][39] - 未来娱乐将出现融合共创的新艺术形式 顶级创意先锋主导高质量动态叙事 数百万人可参与部分内容共创 [39][40] 药物研发加速前景 - Isomorphic Labs依托AlphaFold技术 旨在将药物研发周期从数年或十年缩短至几周或几天 [41] - 目前与礼来 诺华等重要合作 推进癌症 免疫学和肿瘤学研究 预计明年进入临床前阶段 [43][44] - 采用混合模型架构 结合学习组件与化学物理规则约束 以解决生物学数据不足问题 [45] 能源效率与AGI贡献 - 通过模型蒸馏等技术 相同性能下模型能效过去两年提升10倍甚至100倍 [49] - AI系统在电网效率 材料设计和新能源等领域的贡献将远超其自身能源消耗 [50] - 当前总需求未降低因前沿模型仍需扩大规模实验 但服务端能效持续优化 [49]