Workflow
多芯片架构
icon
搜索文档
反潮流的TSV
半导体行业观察· 2025-12-10 09:50
文章核心观点 - 半导体技术发展的瓶颈已从晶体管微缩转向互连,先进封装成为新的前沿领域 [2] - 硅中介层和硅通孔是实现高密度2.5D/3D集成的关键技术,能显著提升带宽和系统性能 [2][4] - 下一代发展趋势是采用更大尺寸的硅通孔,其直径可达50μm,深度可达300μm,以应对高性能计算、人工智能等领域对电气性能、散热和制造良率的更高要求 [2][11][16] 互连技术演进历程 - 互连技术从20世纪标准的引线键合,发展到倒装芯片封装,再到21世纪初出现的硅中介层 [4] - 硅中介层提供了重分布层用于细间距布线、密集型硅通孔阵列用于垂直集成,成为高性能集成的平台 [4] - 硅中介层和硅通孔的创新推动了如Xilinx FPGA Virtex 7、GPU和AI加速器等突破性技术的出现 [4] 硅中介层的功能与材料 - 中介层是连接硅芯片和印刷电路板的中间层,为异构集成组件中的芯片提供安装表面、连接和重新连接到封装基板的功能 [6] - 中介层通常由硅、玻璃或有机衬底制成,完全由代工厂制造,台积电是主要供应商 [7] - 硅中介层的一个主要应用是将高带宽内存连接到高速处理器,单个HBM传输速率最高可达256 GB/s,多个HBM与GPU集成可实现1TB/s或更高的数据传输速率 [7] 更大尺寸硅通孔的优势与驱动 - 传统硅通孔直径通常为5-10μm,深度为50-100μm,正向下一代直径可达50μm、深度可达300μm的硅通孔过渡 [11] - 更大尺寸硅通孔的优势包括:支持更高的数据速率和信号并行传输、承载更大电流且电阻更低、降低电感以增强高频信号完整性、更有效地散热、简化制造工艺提高良率、使更厚的中介层更坚固耐用 [11][15] - 小型硅通孔难以满足人工智能、高性能计算、5G基础设施及汽车电子等领域对电流、散热、带宽和信号完整性的高要求 [11][16] 更大尺寸硅通孔的挑战与应用 - 更大硅通孔的挑战包括:铜和硅热膨胀系数不匹配加剧机械应力、减少中介层上的可用布线空间、因使用更多铜而增加材料成本 [13] - 预计更大尺寸硅通孔将应用于需要海量带宽和可靠电源的高性能计算服务器和百亿亿次级超级计算机、训练大型AI神经网络所需的超高速HBM链路、需要信号完整性的5G基础设施系统,以及需要坚固封装和可靠散热的汽车高级驾驶辅助系统和自动驾驶系统 [16] - 未来中介层将向集成更多功能与材料、采用对抗应力的新材料、嵌入先进冷却技术以及实现成本缩放以应用于消费电子等方向演进 [16]