物理API

搜索文档
英伟达Jim Fan深度分享:揭秘具身智能路线与障碍
36氪· 2025-05-14 10:23
机器人技术发展现状与挑战 - 大语言模型已突破传统图灵测试,但机器人在物理世界的表现仍远未达到人类水平,数据是最大瓶颈 [1] - 机器人需要物理交互的真实数据,这些数据无法从网页抓取,只能靠人类手动采集,效率极低 [1][14] - 当前机器人面临"物理图灵测试"挑战,例如人形机器人动作笨拙、机器狗易滑倒、执行任务时混乱 [8][10] 仿真技术的突破性应用 - 在超高速仿真数字孪生中,机器人可在2小时内完成相当于现实世界10年的训练量 [17][24] - 仿真1.0采用数字孪生范式,矢量化物理引擎运行速度达每秒1万-100万帧 [28] - 通过域随机化技术(改变重力/摩擦/重量等参数),在1万个并行仿真环境中训练机器人 [20][22] 生成式AI驱动的仿真2.0革新 - RoboCasa平台中除机器人本体外,所有视觉元素由AI生成(3D资产/纹理/布局) [30][32] - 视频生成模型仅用1年实现传统图形学30年的进步,可模拟软体/流体等复杂交互 [42][43] - "数字表亲"仿真混合AI生成与传统图形管线,虽非1:1复刻但捕捉关键特征 [38] 世界模型与物理API的未来展望 - 仿真2.0结合视频扩散模型,实现"数字游民"在梦境空间的无限训练场景 [47][49] - 物理API将像大模型API操控数字信息一样操控物质变化,催生"物理App Store"经济 [54] - GR00T系列模型持续开源,推动视觉-语言-动作模型在工业/灵巧操作的应用 [51][53] 技术商业化路径 - 环境生成技术将场景数量扩展N倍,运动生成技术将演示数据扩展M倍 [34] - 米其林大厨可通过传授烹饪技艺给机器人实现服务规模化,形成技能经济 [54] - 最终目标为机器人融入环境智能,突破物理图灵测试临界点 [2][54]