目标导航

搜索文档
图像目标导航的核心究竟是什么?
具身智能之心· 2025-07-04 20:07
研究背景与核心问题 - 图像目标导航需要两种关键能力:核心导航技能(如检测自由空间、障碍物)和通过比较视觉观察与目标图像计算方向信息 [2] - 当前主流方法依赖专门的图像匹配或预训练计算机视觉模块进行相对位姿估计 [2] - 研究聚焦于是否可以通过强化学习对完整智能体进行端到端训练来解决该任务 [2] 核心研究内容与方法 - 探讨了多种架构设计对任务性能的影响,核心在于如何支持图像间的隐式对应计算 [3] - 主要架构包括Late Fusion、ChannelCat、SpaceToDepth + ChannelCat、Cross-attention [4] - 实验设计使用Habitat模拟器和Gibson数据集,动作空间包括前进、左右转向和停止 [7] - 评估指标包括成功率(SR)和SPL(成功路径长度与最优路径长度的比值) [7] 主要发现 - 早期patch级融合(如ChannelCat、Cross-attention)比晚期融合(Late Fusion)更关键,能更好支持隐式对应计算 [8] - ChannelCat(ResNet9)在Sliding=True时SR达83.6%,远高于Late Fusion的13.8% [6] - Cross-attention(DEBiT-b)在Sliding=True时SR达90.5% [6] - 低容量架构(如ResNet9)在Sliding=False时SR从83.6%降至31.7%,而DEBiT受影响较小(从90.5%降至81.7%) [8][9] - 能力迁移性:将Sliding=True训练的感知模块权重迁移到Sliding=False并微调后,SR从31.7%提升至38.5% [10][11] 导航与相对位姿估计的关联 - 导航性能与相对位姿估计性能存在相关性,DEBiT在两者上均表现最优 [12] - 导航成功率(SR)与相对位姿估计精度(误差<2m, 20°)呈正相关 [12] 结论 - 支持早期局部融合(如交叉注意力、ChannelCat)的结构对任务成功至关重要 [15] - 模拟器的Sliding设置显著影响性能,但通过迁移感知模块权重可部分迁移至真实环境 [15] - 导航性能与相对位姿估计能力相关,验证了方向信息提取的核心作用 [15] - 简单低容量架构仅通过RL训练难以成功解决图像目标导航,预训练仍不可或缺 [15]
机器人导航的2个模块:视觉语言导航和目标导航有什么区别?
具身智能之心· 2025-07-02 18:18
机器人导航技术演变 - 技术路线从传统建图定位导航向基于大模型方案演变 分为视觉语言导航(VLN)和目标导航两类 [1] - VLN核心是"听懂指令走对路" 目标导航核心是"看懂世界自己找路" [1][6] 视觉语言导航(VLN)技术架构 - 任务包含语言指令理解、环境感知、运动策略规划三方面 系统由视觉语言编码器、环境历史表征、动作策略模块构成 [2] - 编码器采用预训练视觉语言模型 LLM用于指令拆解和任务拆分是主流范式 [2] - 序列决策采用隐式端到端(隐变量表示)或显式端到端(拓扑图/BEV语义地图/神经辐射场建模)方法 [2] - 策略网络学习从标注数据提取模式转向LLM先验知识蒸馏 [3] 目标导航技术特征 - 需在陌生3D环境中仅凭目标描述自主完成探索与路径规划 [4] - 实现语义解析(识别空间特征与视觉属性)、环境建模(构建空间拓扑)、动态决策(避开障碍物)的交叉突破 [6] 商业落地应用 - 终端配送场景:美团无人车动态路径重规划 Starship园区配送机器人欧美落地 [8] - 医疗/酒店/餐饮场景:嘉楠科技、云迹科技、擎朗智能商用机器人实现药品/文件/餐食自主配送 美国Aethon公司TUG系列应用 [8] - 人形机器人领域:宇树科技Unitree通过Habitat预训练 智元工业场景集成导航模块 特斯拉Optimus展示端到端操作能力 [8][9] - 导航技术岗位需求旺盛 部分公司开出七位数年薪 [9] 技术学习挑战 - 需掌握自然语言处理、计算机视觉、强化学习、图神经网络等多领域知识 知识碎片化导致入门困难 [10] 相关培训课程内容 - VLN课程涵盖仿真环境、基准测试、端到端方法、数据增强策略等 目标导航课程包含语义框架、Habitat仿真、LLM/VLM驱动系统等 [13][16] - 学习成果包括掌握技术框架、3D仿真环境开发、零样本导航实现、Sim2Real部署等能力 [15][17]