美团无人配送车

搜索文档
美团无人车驶入福田中心区
深圳商报· 2025-08-07 00:46
无人配送行业进展 - 美团无人配送车在深圳市福田区莲花山中心区开启常态化测试运营 [2] - 这是全国首次无人配送车进入人口密集、商业高度活跃的一线城市中心城区 [2] - 相关部门对线路运行条件与交通影响进行了综合性严格评估 [2] 技术与管理规范 - 运行车辆接入政府平台以实现动态数据监督与调度 [2] - 示范车辆张贴全市统一的功能型无人车试点标识 [2] - 车前安装全市统一编号的标识牌便于规范管理与市民科普认知 [2] 业务应用场景 - 未来有望通过与骑手协同实现24小时高效运转 [2] - 将为市民提供生鲜食杂的即时配送服务 [2] - 将融入餐饮、外卖、生鲜、跑腿等场景 [2]
美团无人车驶入深圳福田莲花山中心区 核心区域开启常态化测试运营
证券时报网· 2025-08-06 18:37
无人配送车测试运营 - 美团无人配送车在深圳市福田区莲花山中心区开启常态化测试运营,这是全国首次在人口密集、商业活跃的一线城市中心城区进行无人配送测试 [1] - 测试区域位于深圳CBD中轴线,集行政办公、市民服务、文化展示、公共活动于一体,具有重要示范意义 [1] - 未来美团无人配送车计划与骑手协同实现24小时运转,覆盖生鲜食杂即时配送及餐饮、外卖、跑腿等场景 [1] 运营规范与生态建设 - 线路开通前已完成交通影响评估,运行车辆接入政府平台实现动态监督,车身张贴统一标识便于管理 [2] - 企业可通过深圳巴士集团获得公交场站资源支持,解决停放、充电、运维等痛点 [2] - 美团配备远程监督安全员和线下网格安全员,巴士集团协助路面巡查,试点按"小范围测试→大片区试点"逐步推进 [2] 城市无人物流发展 - 深圳正探索无人物流的规范化、规模化、商业化与网联化发展,推动技术融入城市生活 [3] - 福田莲花山中心区试运营标志着自动驾驶技术从测试走向成熟,未来将与无人机共同构建新物流体系 [3]
大话一下!具身里面视觉语言导航和目标导航有什么区别?
具身智能之心· 2025-08-01 18:30
机器人导航技术演变 - 技术路线从传统建图定位导航发展到基于大模型方案的导航,后者分为视觉语言导航(VLN)和目标导航两类 [1] - VLN是"听懂指令走对路",目标导航是"看懂世界自己找路",代表从被动执行到主动探索的跃迁 [1][7] 视觉语言导航(VLN)技术架构 - 任务包含理解语言指令、感知环境、规划运动策略三方面,系统由视觉语言编码器、环境历史信息表征、动作策略模块构成 [2] - 主流范式采用预训练视觉语言模型,利用LLM进行指令拆解和任务拆分 [2] - 序列决策过程中,隐式端到端方法用隐变量累积历史信息,显式端到端方法采用拓扑图/BEV语义地图等建模环境 [4] - 策略网络学习从数据标注转向LLM先验知识蒸馏,数据增强是关键 [4] 目标导航技术特征 - 需在陌生环境中仅凭目标描述(坐标/图片/自然语言)自主完成探索与路径规划 [5] - 需实现语义解析(识别空间特征与视觉属性)、环境建模(构建空间拓扑)、动态决策(避障)等复合能力 [7] 商业落地现状 - 终端配送领域:美团无人车实现动态路径重规划,Starship Technologies在欧美高校社区部署配送机器人 [9] - 服务领域:嘉楠科技、云迹科技、擎朗智能的机器人实现药品/文件/餐食配送,美国Aethon公司TUG系列投入应用 [10] - 人形机器人领域:宇树科技Unitree通过Habitat预训练,智元机器人集成工业导航模块,特斯拉Optimus展示端到端操作能力 [10] 行业人才需求 - 导航技术被公认为具身智能最先落地的子领域,相关岗位年薪达七位数 [10] 技术学习挑战 - 需融合自然语言处理、计算机视觉、强化学习、图神经网络等多领域知识,存在知识碎片化与入门门槛高的问题 [11]
为什么能落地?目标导航是怎么识别目标并导航的?
具身智能之心· 2025-07-18 11:21
目标驱动导航技术概述 - 具身导航涉及语言理解、环境感知、路径规划三大技术支柱,目标驱动导航是其最具代表性的方向,要求智能体在陌生环境中仅凭目标描述自主完成探索与路径规划[2] - 与传统视觉语言导航不同,目标驱动导航需实现从"听懂指令走对路"到"看懂世界自己找路"的跃迁,涉及语义解析、环境建模和动态决策能力[2] - 技术依赖计算机视觉、强化学习与3D语义理解的交叉突破,典型场景如"去厨房拿可乐"需识别空间特征、构建拓扑地图并避开动态障碍[2] 产业化落地现状 - 终端配送领域:美团无人配送车采用动态路径重规划技术,Starship Technologies的机器人已在欧美高校和社区部署[3] - 医疗/酒店/餐饮场景:嘉楠科技、云迹科技、擎朗智能的商用机器人实现药品、文件、餐食自主配送,美国Aethon公司TUG系列提升服务效率[3] - 人形机器人适配:宇树科技Unitree系列通过Habitat预训练完成基础导航,智元机器人集成工业场景导航模块,特斯拉Optimus展示端到端操作能力[3] 技术演进与生态发展 - Habitat仿真生态完整记录技术迭代,从2020年CVPR点导航基准扩展至图像导航、目标导航及移动抓取任务,形成闭环评测体系[4] - 关键技术突破包括:视觉预训练模型提升特征泛化,分布式强化学习框架DDPPO使PointNav任务SPL指标显著提升,LLM解决开放词汇导航难题[4] - 当前技术梯度:PointNav和闭集ObjectNav接近人类表现,开放词汇物体导航和动态障碍场景仍存挑战,Sim2Real迁移框架推动实际部署[4] 三代技术路线迭代 - 第一代端到端方法:基于强化学习与模仿学习,在点导航和闭集图片导航任务中SPL指标逼近人类表现[5] - 第二代模块化方法:通过显式构建语义地图分解任务,零样本目标导航中未见物体场景成功率显著提升[5] - 第三代LLM/VLM融合方法:利用大语言模型生成语义指导策略,视觉语言模型提升开放词汇匹配精度,重点开发场景表征接口[7] 技术挑战与学习路径 - 具身导航需综合自然语言处理、计算机视觉、强化学习和场景图知识,领域论文碎片化且实战指导缺乏,Habitat生态文档不足提高入门门槛[9] - 解决方案包括构建领域框架、理论结合实践、系统化课程设计,覆盖语义导航核心框架、Habitat仿真生态、端到端/模块化/LLM-VLM导航方法及实战部署[10][11][12] 课程体系与目标 - 课程大纲分12周,涵盖Habitat仿真开发、端到端/模块化/LLM-VLM方法理论与实践,最终完成VLFM算法复现与真实场景部署[16][17][19][21][23][25] - 面向机器人抓取从业人员、具身智能研究者、CV/自动驾驶转行者,培养独立开展算法改进与工程优化的能力,掌握Sim2Real部署流程[33]
具身目标导航是怎么找到目标并导航的?
具身智能之心· 2025-07-13 12:13
机器人导航技术演进 - 技术路线从传统建图定位导航向基于大模型方案演变 分为视觉语言导航(VLN)和目标导航两类 [1] - VLN核心是"听懂指令走对路" 目标导航是"看懂世界自己找路" [1][6] 视觉语言导航(VLN)技术架构 - 任务包含三要素:理解语言指令 感知环境 规划运动策略 [2] - 系统由视觉语言编码器 环境历史信息表征 动作策略三大模块构成 [2] - 编码器采用预训练视觉语言模型 LLM用于指令拆解成为主流范式 [2] - 序列决策采用隐式端到端(隐变量表示)或显式端到端(拓扑图/BEV地图等)方法 [2] 目标导航技术突破 - 需在陌生环境中仅凭目标描述自主完成探索与路径规划 [4] - 实现从显式指令到自主决策跃迁 需融合语义解析 环境建模 动态决策能力 [6] - 关键技术包括端到端强化学习 模块化语义地图构建 LLM/VLM集成方法 [17] 商业应用现状 - 终端配送领域:美团无人车实现动态路径重规划 Starship园区配送机器人欧美落地 [8] - 服务场景:嘉楠科技 云迹科技 擎朗智能等公司实现药品/文件/餐食自主配送 [8] - 人形机器人领域:宇树科技Unitree 智元机器人 特斯拉Optimus集成导航模块 [8][9] 行业人才需求 - 导航技术被公认为具身智能最先落地的子领域 [9] - 具身公司为导航岗位开出七位数年薪 [9] 技术学习难点 - 需掌握NLP CV 强化学习 图神经网络等多领域知识 [10] - 知识碎片化严重 论文数量繁多导致入门困难 [10] 专业课程内容 - VLN课程覆盖仿真环境 基准测试 端到端方法 数据增强等模块 [13] - 目标导航课程包含语义框架 Habitat仿真 LLM/VLM系统等方向 [16] - 学习成果包括掌握3D仿真接口 复现主流框架 实现Sim2Real迁移等能力 [16][17]
具身领域的目标导航到底是什么?主流算法盘点~
自动驾驶之心· 2025-07-04 18:27
目标驱动导航技术概述 - 具身导航涉及语言理解、环境感知、路径规划三大技术支柱,目标驱动导航是其最具代表性的方向,要求智能体在陌生环境中仅凭目标描述自主完成探索与路径规划 [1] - 与传统视觉语言导航不同,目标驱动导航需实现从"听懂指令走对路"到"看懂世界自己找路"的跃迁,涉及语义解析、环境建模与动态决策的交叉突破 [1] 产业化落地现状 - 终端配送场景中,美团无人配送车通过动态路径重规划执行任务,Starship Technologies的园区配送机器人已在欧美高校和社区部署 [2] - 医疗、酒店及餐饮场景中,嘉楠科技、云迹科技、擎朗智能的商用服务机器人以及美国Aethon公司的TUG系列实现药品、文件和餐食的自主配送 [2] - 人形机器人领域,宇树科技Unitree系列通过Habitat预训练完成导航任务,智元机器人集成目标驱动导航模块,特斯拉Optimus展示端到端操作能力 [2] 技术演进与生态发展 - 基于Habitat仿真的具身导航生态自2020年CVPR提出点导航基准以来,逐步扩展至图像导航、目标导航及移动抓取任务,形成闭环评测体系 [3] - 视觉预训练模型提升特征泛化能力,分布式强化学习框架使PointNav任务SPL指标显著提升,大语言模型解决部分开放词汇导航难题 [3] - 当前技术进展呈现梯度:PointNav和闭集ObjectNav接近人类表现,开放词汇物体导航和动态障碍物场景仍面临挑战 [3] 三代技术路线迭代 - 第一代端到端方法基于强化学习与模仿学习框架,在点导航与闭集图片导航任务中取得突破,SPL指标逼近人类表现 [4] - 第二代模块化方法通过显式构建语义地图,在零样本目标导航任务中展现优势,未见物体场景下成功率提升明显 [4] - 第三代LLM/VLM融合方法引入大语言模型的知识推理能力,提升开放词汇目标匹配精度,当前研究重点在于设计场景表征接口 [6] 技术挑战与学习痛点 - 目标驱动导航需掌握自然语言处理、计算机视觉、强化学习和场景图相关知识,学习路径碎片化且论文数量繁多 [8] - 缺乏系统实战指导和高质量文档,Habitat生态的导航研究入门难度较高 [8] 课程特点与大纲 - 课程基于Just-in-Time Learning理念,帮助学员快速掌握核心技术栈并构建领域框架 [9][10] - 课程涵盖目标驱动导航理论基础、Habitat仿真生态解析、三代技术方法论及实战环节,最终聚焦VLFM算法复现与真实场景部署 [14][15][16][17][18] - 课程进度安排为3个月,覆盖端到端方法、模块化架构及LLM/VLM驱动系统的理论与实践 [24][25] 目标学员与预期成果 - 目标学员包括机器人抓取领域从业人员、具身智能研究者、传统CV或自动驾驶转行者等,需具备Python和PyTorch基础 [23] - 预期成果包括掌握主流框架复现能力、零样本导航技术落地、Sim2Real部署流程理解及独立开展算法改进的能力 [25]
传统导航和具身目标导航到底有啥区别?
具身智能之心· 2025-07-04 17:48
机器人导航技术演变 - 技术路线从传统建图定位导航向基于大模型方案演变,分为视觉语言导航(VLN)和目标导航两类 [1] - VLN核心是"听懂指令走对路",目标导航核心是"看懂世界自己找路" [1][6] 视觉语言导航(VLN)技术架构 - 任务包含理解语言指令、感知环境、规划运动策略三方面,系统由视觉语言编码器、环境历史表征、动作策略模块构成 [2] - 主流采用预训练视觉语言模型和LLM进行指令拆解,编码器设计需解决多模态表征空间投影问题 [2] - 序列决策通过隐式端到端(隐变量)或显式端到端(拓扑图/BEV语义地图)方法实现环境建模 [2] - 策略学习从标注数据转向LLM知识蒸馏,数据增强是关键 [3] 目标导航技术突破 - 需在陌生环境中仅凭目标描述自主完成探索与路径规划,涉及语义解析、环境建模、动态决策 [4][6] - 需整合计算机视觉、强化学习与3D语义理解技术,实现从被动执行到主动决策的跃迁 [6] 商业应用现状 - 美团无人配送车、Starship Technologies园区机器人实现动态环境配送 [8] - 嘉楠科技、云迹科技、擎朗智能的医疗/酒店机器人完成药品/餐食自主配送 [8] - 人形机器人领域:宇树科技Unitree系列、智元工业机器人、特斯拉Optimus集成目标导航模块 [8][9] - 导航技术岗位需求旺盛,部分公司开出七位数年薪 [9] 技术学习挑战 - 需掌握自然语言处理、计算机视觉、强化学习、图神经网络等多领域知识 [10] - 知识碎片化且论文数量庞大,跨领域学习路径困难 [10] 专业课程内容 - VLN课程覆盖仿真环境、端到端方法、数据增强策略及实战,培养1年从业经验 [13][15][16] - 目标导航课程包含Habitat仿真、LLM/VLM驱动系统、Sim2Real部署等,实现零样本导航能力 [16][17]
机器人导航的2个模块:视觉语言导航和目标导航有什么区别?
具身智能之心· 2025-07-02 18:18
机器人导航技术演变 - 技术路线从传统建图定位导航向基于大模型方案演变 分为视觉语言导航(VLN)和目标导航两类 [1] - VLN核心是"听懂指令走对路" 目标导航核心是"看懂世界自己找路" [1][6] 视觉语言导航(VLN)技术架构 - 任务包含语言指令理解、环境感知、运动策略规划三方面 系统由视觉语言编码器、环境历史表征、动作策略模块构成 [2] - 编码器采用预训练视觉语言模型 LLM用于指令拆解和任务拆分是主流范式 [2] - 序列决策采用隐式端到端(隐变量表示)或显式端到端(拓扑图/BEV语义地图/神经辐射场建模)方法 [2] - 策略网络学习从标注数据提取模式转向LLM先验知识蒸馏 [3] 目标导航技术特征 - 需在陌生3D环境中仅凭目标描述自主完成探索与路径规划 [4] - 实现语义解析(识别空间特征与视觉属性)、环境建模(构建空间拓扑)、动态决策(避开障碍物)的交叉突破 [6] 商业落地应用 - 终端配送场景:美团无人车动态路径重规划 Starship园区配送机器人欧美落地 [8] - 医疗/酒店/餐饮场景:嘉楠科技、云迹科技、擎朗智能商用机器人实现药品/文件/餐食自主配送 美国Aethon公司TUG系列应用 [8] - 人形机器人领域:宇树科技Unitree通过Habitat预训练 智元工业场景集成导航模块 特斯拉Optimus展示端到端操作能力 [8][9] - 导航技术岗位需求旺盛 部分公司开出七位数年薪 [9] 技术学习挑战 - 需掌握自然语言处理、计算机视觉、强化学习、图神经网络等多领域知识 知识碎片化导致入门困难 [10] 相关培训课程内容 - VLN课程涵盖仿真环境、基准测试、端到端方法、数据增强策略等 目标导航课程包含语义框架、Habitat仿真、LLM/VLM驱动系统等 [13][16] - 学习成果包括掌握技术框架、3D仿真环境开发、零样本导航实现、Sim2Real部署等能力 [15][17]
今年大火的目标导航到底是什么?从目标搜索到触达有哪些路线?
具身智能之心· 2025-06-26 22:19
目标驱动导航技术概述 - 具身导航涉及语言理解、环境感知、路径规划三大技术支柱,目标驱动导航是其最具代表性的方向,要求智能体在陌生环境中仅凭目标描述自主完成探索与路径规划[2] - 与传统视觉语言导航不同,目标驱动导航需实现从"听懂指令走对路"到"看懂世界自己找路"的跃迁,涉及语义解析、环境建模和动态决策能力[2] 产业化落地现状 - 终端配送场景中,美团无人配送车通过动态路径重规划在复杂城市环境执行任务,Starship Technologies的园区配送机器人已在欧美高校和社区部署[3] - 医疗/酒店/餐饮场景中,嘉楠科技、云迹科技、擎朗智能的商用服务机器人及美国Aethon的TUG系列实现药品、文件和餐食自主配送[3] - 人形机器人领域,宇树科技Unitree系列通过Habitat预训练完成基础导航,智元机器人集成目标导航模块,特斯拉Optimus展示端到端操作能力[3] 技术发展代际 - 第一代端到端方法:基于强化学习与模仿学习,在PointNav和闭集图片导航任务中SPL指标逼近人类表现[5] - 第二代模块化方法:通过显式构建语义地图分解任务,在零样本ObjectNav任务中未见物体场景成功率显著提升[5] - 第三代LLM/VLM融合方法:利用大语言模型生成语义指导策略,视觉语言模型提升开放词汇匹配精度,当前重点为设计场景表征接口[7] Habitat仿真生态 - 2020年CVPR提出PointNav基准后,评测体系扩展至ImageNav、ObjectNav及移动抓取任务,形成技术闭环[4] - 视觉预训练模型提升特征泛化能力,DDPPO框架使PointNav任务SPL指标显著提升,LLM解决部分开放词汇导航难题[4] - Meta AI的Sim2Real迁移框架为仿真到真实部署提供方法论,CMU与Stanford推动动态环境语义地图更新技术[4] 技术挑战与课程设计 - 学习路径需整合自然语言处理、计算机视觉、强化学习和场景图知识,面临论文碎片化与实战闭环缺失的挑战[9] - 课程覆盖三代技术演进路径(端到端/模块化/LLM融合),包含Habitat仿真生态解析及VLFM算法复现等实战环节[15][16][24] - 学员将掌握零样本导航、开放词汇识别等关键技术,理解Sim2Real部署流程,具备论文级算法改进能力[31]