空间推理

搜索文档
AI Lab最新InternSpatia:VLM空间推理数据集,显著提升模型能力
具身智能之心· 2025-06-24 22:09
背景与动机 - 当前视觉语言模型(VLMs)在空间推理任务中存在显著不足,如物体位置/大小比较、多视角关系理解等[3] - 现有数据集存在三大局限:场景单一性(集中于室内/室外场景)、指令格式受限(仅支持自然语言或区域掩码)、多视角监督缺失(超90%为单图推理)[3] InternSpatial数据集 - 规模与结构:包含1200万QA对(950万单视图+250万多视图),覆盖5类场景(自然场景、室内、街景、物体中心、具身导航)[3] - 指令多样性:支持19种指令格式,显著优于对比数据集[3] - 视觉格式:提供原始图/带边界框图/掩码图/编号物体图等多种形式[4] - 文本格式:包含自然语言/带<ref>标记/坐标引用等,新增246万QA对的多视角旋转角度预测任务[6] InternSpatial-Bench评估基准 - 单视图诊断:包含6,008 QA对,涵盖位置比较(1845)、大小比较(1822)、旋转估计(409)、物体计数(899)、存在性估计(1000)五类任务[7] - 多视图扩展:在VSI-Bench新增1,000个旋转角度预测QA对[7] 数据引擎设计 - 采用三阶段自动化流水线:注释生成(复用现有注释或SAM2生成掩码)、视角对齐(构建标准3D坐标系)、模板化QA生成(预定义任务模板动态填充)[9] 关键实验结果 - 空间推理性能:InternVL-Spatial-8B模型在单视图任务中位置比较提升25%,多视图任务中物体计数提升17%(68.7 vs 51.7)[9][10] - 多任务表现:在物体计数、绝对距离、物体大小等7项任务中平均得分52.3,较基线提升10.7分[10] - 指令格式鲁棒性:训练后不同格式间准确率差距从23%缩小至5%以内[12] 当前不足 - 模板局限性:自动生成的QA对难以完全复现自然语言复杂度,部分描述机械化[12] - 开放推理欠缺:集中于结构化空间关系,缺少开放式场景推理(如物体运动轨迹解释)[12]
多模态模型挑战北京杭州地铁图!o3成绩显著,但跟人类有差距
量子位· 2025-06-07 13:02
多模态大模型视觉推理能力评测 - 核心观点:多模态大模型在细粒度视觉理解与空间推理任务中存在明显瓶颈,特别是处理高分辨率交通图时表现不佳[2][6] - 西湖大学等团队推出首个高分辨率交通图评测基准ReasonMap,聚焦结构化空间信息理解[3][5] ReasonMap基准设计特点 - 高分辨率挑战:测试图像平均分辨率达5839×5449,远超现有视觉任务标准[10] - 难度感知设计:为图像设置难度标签并均衡分布问答对[11] - 多维度评估体系:除准确性外还评估路径合理性、换乘策略等[12] - 半自动化标注流程:支持题目难度调控和多样化问题模板,覆盖单线直达、多线换乘等场景[13] 模型性能表现 - 闭源模型显著领先:GPT-o3在短/长问题中加权准确率达63.02%/59.11%,远超开源模型Qwen2.5-VL-72B的26.65%/24.22%[17] - 城市差异明显:北京、杭州地铁图难度最高,测试样本分别达40/39个[9] - 强化学习模型优势:经过RL训练的闭源模型在路径规划正确性上比通用模型高15-20个百分点[15][17] 技术突破方向 - 视觉编码能力:高分辨率图像处理仍是技术瓶颈,开源模型平均准确率不足30%[6][17] - 跨线路推理:模型普遍存在视觉混淆和站点遗漏问题,尤其在多线换乘场景[6][18] - 真实场景适配:当前模型与人类思维模式存在差距,需优化空间关系理解[12][19] 行业影响 - 评测标准革新:ReasonMap成为判断模型视觉-空间推理能力的核心基准工具[19] - 技术路线分化:闭源体系通过强化学习后训练建立显著优势,开源生态需突破计算效率瓶颈[15][17] - 应用场景拓展:该研究为自动驾驶、机器人导航等需要复杂空间推理的领域提供评估框架[5][13]