类突触计算

搜索文档
新型存储,谁最有希望?
半导体行业观察· 2025-07-15 09:04
存储技术演进与计算范式变革 - 存储技术从基础数据保留演进至支持AI/ML的内存计算范式 通过直接在存储阵列中处理数据显著提升计算效率并降低能耗 [1] - 新兴非易失性存储(eNVMs)如ReRAM、MRAM、FeRAM、PCM突破传统RAM断电数据丢失限制 同时探索二维材料和有机材料的新型存储方案 [3] - 后CMOS时代需突破冯·诺依曼架构限制 兼具CMOS兼容性和规模扩展性的存储技术将引发计算架构革命 2022年IRDS报告预测其潜力 [5] 新兴存储技术分类与商业化进展 - 按成熟度划分六类新兴存储技术:MRAM/FeRAM/ReRAM已进入商用验证阶段 PCM/CBRAM/2D RAM等处于早期研发 [7] - 非易失性存储技术发展历程显示 2010年后因电荷泄漏问题转向3D NAND堆叠及新型存储材料研究 [7] - 类突触存储器与eNVMs结合将重构计算架构 提升边缘计算、云环境及区块链等场景的系统性能与能效 [8] 技术特性与场景适配性 - 铁电存储器(FeRAM)和电阻式存储器(ReRAM)在柔性基底上表现突出 可承受弯曲拉伸 适用于可穿戴设备与IoT系统 [13][15] - 二维材料(如MoS₂/WS₂)凭借原子级厚度和可调带隙 实现超高密度存储集成 但面临大面积单晶制备和环境稳定性挑战 [21] - 内存计算技术通过消除"存储-处理器"数据传输瓶颈 特别适合边缘计算中的实时推理和低功耗场景 [11] 制造工艺与集成挑战 - eNVM制造需超高真空沉积工艺 材料纯度控制直接影响器件寿命 原位测量技术提升性能一致性 [18][19] - 二维材料与CMOS集成需低温生长技术 互连技术和封装方案是AI硬件高密度集成的关键障碍 [21][23] - 高温环境存储技术需与碳化硅(SiC)等元件协同开发 材料合成和制造精度决定极端条件下的可靠性 [20][22] 类脑计算与未来架构转型 - 从数字到类突触的转变将采用脉冲神经网络(SNN) 通过STDP等生物机制实现事件驱动的本地化计算 [25][27] - 端到端模拟计算系统可消除数字逻辑中心化需求 动态视觉传感器(DVS)等新型硬件推动实时响应能力 [28] - 混合系统当前面临模拟-数字转换的能效损耗 未来完全类突触系统将依赖稀疏异步交互模式 [27][28] 产业发展与基础设施需求 - 需建立国家级微电子研究设施 覆盖材料合成、器件测试到异构集成 以加速技术商业化 [29][30] - 全球半导体工具链扩张背景下 开发专用于新兴材料的计量设备是突破CMOS限制的前提条件 [30]