跨形态学习

搜索文档
Jinqiu Select | 为什么具身机器人的未来无关形态
锦秋集· 2025-07-26 11:00
机器人技术发展趋势 - Physical Intelligence的π VLA模型取得突破性成功,标志着机器人产业的重要转折点,但构建真正的机器人智能比预想的更复杂和分散[1] - 机器人技术栈正在经历大解构,从模型编排到运动控制、数据采集到跨形态学习各环节专业化发展[1] - 机器人技术走向规模化,但需在物理世界的重力、摩擦等限制下证明可靠性,智能具身化成本仍高[1] 机器人形态进化逻辑 - 生命进化中的"蟹化"现象显示形式服从功能,机器人形态也应适应多样化环境而非模仿人类[5] - 机器人技术未来将多样化发展,由任务、地形和环境塑造形态,而非收敛于人形[6] - 计算机、飞机等发明证明高效能无需模仿生物形态,机器人领域存在"人形谬误"[8] 人形机器人局限性 - 双足运动能量效率比人类低15倍以上,比轮式低300倍,Boston Dynamics商业化产品均为非人形设计[9] - 机器人吸尘器成功源于功能优化而非人形模仿,其低矮圆盘设计优于拟人化方案[10] - 五指手机械复杂度高,五倍执行器带来更多故障点,特定任务末端执行器可靠性更优[12] 技术范式转变 - 应从硬件优先转向软件向下,训练可泛化智能而非绑定特定硬件形态[13] - Physical Intelligence采用形态无关方法,跨手臂/移动基座等形态训练实现能力迁移[14] - 机器人学习借鉴LLMs模式,通过异构数据训练VLA模型实现跨模态泛化[16] 行业实践案例 - Boston Dynamics实际收入来自轮式工业机器人Stretch和四足Spot,已部署1500+台[9] - Physical Intelligence的π0.5模型通过跨具身数据训练,实现"清洁厨房"等复杂任务分解[16] - Formic通过机器人即服务模式,在真实工厂环境中积累边缘案例数据驱动AI进步[18] 技术堆栈解构 - 机器人堆栈分为数据收集、软件和训练基础设施三层,形成从物理操作到智能行为的闭环[20] - 跨形态数据聚合可提升模型性能,消融实验显示去除跨具身数据会导致显著性能下降[17] - 行业出现类似自动驾驶的专业化分工趋势,特定领域极致化公司更具优势[1]