Workflow
转债风格轮动
icon
搜索文档
可转债周报:转债向股看,渐入高位如何布局-20250729
长江证券· 2025-07-29 16:43
报告行业投资评级 未提及 报告核心观点 - 当周(2025年7月21日 - 2025年7月26日)转债市场延续温和上行,价格中枢接近历史高位,估值结构整体拉伸,交易热度活跃 中盘风格领先,低价与中高价品种估值修复动能增强,反映信用与弹性偏好改善 权益市场成长风格占优,科创与制造类资金流入带动转债高弹性个券活跃 风格与行业轮动强度上行,短期情绪升温需警惕波动加剧风险 当前建议重估风险收益比,均衡配置中低价优质个券,兼顾基本面、估值安全与流动性 [2][5] 各部分总结 看股做债,转债步入高位下如何布局 - 转债周均价中位数接近130元,配置策略需重估 行业轮动强度达历史相对高位,全A市场净融资额显示短期情绪或过热 [14][17] - 行业轮动可布局第四象限板块,如交通运输和商贸零售;转债风格轮动中,大盘及中价指数或孕育机会 [22][23] 市场主题周度回顾 权益主题周度回顾 - 权益市场交易性主题活跃,雅江水电工程相关基建产业链、资源类主题、领涨龙头等指数涨幅大,科技领域分化 建议关注高弹性交易机会,谨慎参与短期过热题材 [27] 转债周度回顾 - 转债市场延续升势,资金转向中盘弹性品种,活跃度提升 估值结构修复,隐含波动率上行 行业上周期与成长风格表现好,一级市场供给稳定 建议围绕中价位品种挖掘机会,控制风险 [30] 市场周度跟踪 主要股指走强,周期类板块为当周主线 - 主要股指延续走强,科创类中小盘股票表现突出 主力资金净流出加剧,日均成交额上升 [31] - 分行业来看,周期类板块表现强,资金向其集中 市场资金结构性流动,与板块涨跌幅正相关 部分板块拥挤度高,资金集中于基建与部分周期板块 [36][37][43] 转债市场延续走强,中盘转债表现居前 - 可转债市场整体上行,中盘转债表现更佳,成交活跃度攀升 [47] - 按平价区间,转债估值整体拉伸;按市价区间,估值分化调整 隐含波动率攀升,市场波动或放大 转债中位数上行,市场交投情绪高 [50][51][54] - 分板块转债行情走强,资金集中度提升 个券普遍走强,医药与周期类板块表现好,涨幅居前转债多为正股带动且呈高弹性短久期偏好 [57][59][61] 发行及条款跟踪 一级市场预案发行情况 - 当周2只新券上市,9家企业更新发行预案 目前交易所受理及之后阶段存量项目披露总规模达527.6亿元 [66][67][68] 下修相关公告整理 - 当周6只个券公告预计触发下修,9只公告不下修,1只提议下修 [73][74][77] 赎回相关公告整理 - 当周9只个券公告预计触发赎回,5只公告提前赎回,4只明确不提前赎回 [78][80][83]
金融工程定期:7月转债配置:转债估值偏贵,看好平衡低估风格
开源证券· 2025-07-16 13:47
量化模型与构建方式 1. **模型名称**:转债综合估值因子模型 **模型构建思路**:通过结合转股溢价率偏离度和理论价值偏离度(蒙特卡洛模型)两个因子,构建综合估值因子,用于评估转债的估值水平[20] **模型具体构建过程**: - 转股溢价率偏离度 = 转股溢价率 − 拟合转股溢价率,衡量转股溢价率相对于拟合值的偏离度[21] - 理论价值偏离度(蒙特卡洛模型) = 转债收盘价 / 理论价值 - 1,通过蒙特卡洛模拟(10000条路径)计算转债理论价值,考虑转股、赎回、下修、回售条款[21] - 综合估值因子公式: $$转债综合估值因子 = Rank(转股溢价率偏离度) + Rank(理论价值偏离度(蒙特卡洛模拟))$$ **模型评价**:在全域、平衡型和偏债型转债上表现较优,偏股型转债中理论价值偏离度单独效果更好[20][21] 2. **模型名称**:转债风格轮动模型 **模型构建思路**:基于市场情绪指标(动量与波动率偏离度)对低估风格指数进行动态配置[27] **模型具体构建过程**: - 计算单个转债的20日动量和波动率偏离度,取风格指数内中位数作为该指数的情绪指标[27] - 市场情绪捕捉指标公式: $$转债风格市场情绪捕捉指标 = Rank(转债20日动量) + Rank(波动率偏离度)$$ - 根据指标逆序排名分配仓位,若排名相同则等权配置,若同时选中三种风格则全仓平衡低估风格[27][28] **模型评价**:通过动态调整风格暴露提升组合收益风险比[27] --- 量化因子与构建方式 1. **因子名称**:转股溢价率偏离度 **因子构建思路**:衡量转债转股溢价率与拟合值的差异,消除平价影响[21] **因子具体构建过程**: - 截面拟合转股溢价率与转股价值的关系曲线,公式为: $$y_{i}=\alpha_{0}+\,\alpha_{1}\cdot\,{\frac{1}{x_{i}}}+\epsilon_{i}$$ 其中$x_i$为转股价值,$y_i$为转股溢价率[42] - 偏离度 = 实际转股溢价率 − 拟合值[21] 2. **因子名称**:理论价值偏离度(蒙特卡洛模型) **因子构建思路**:通过期权定价模型计算转债理论价值,捕捉价格与理论值的偏差[21] **因子具体构建过程**: - 使用蒙特卡洛模拟(10000条路径)计算理论价值,考虑转股、赎回、下修、回售条款[21] - 偏离度 = (转债收盘价 / 理论价值)− 1[21] 3. **因子名称**:修正YTM – 信用债YTM **因子构建思路**:剥离转股条款影响,比较偏债型转债与信用债的收益率差异[6][43] **因子具体构建过程**: - 修正YTM = 转债YTM ×(1−转股概率) + 预期转股年化收益 × 转股概率,转股概率通过BS模型计算[43] - 取截面中位数:median{修正YTM − 同等级同期限信用债YTM}[43] --- 模型的回测效果 1. **转债综合估值因子模型**: - 偏股转债低估指数:年化收益率24.63%,年化波动率20.59%,IR 1.20,月度胜率60.67%[24] - 平衡转债低估指数:年化收益率13.94%,年化波动率11.83%,IR 1.18,月度胜率61.80%[24] - 偏债转债低估指数:年化收益率12.85%,年化波动率9.45%,IR 1.36,月度胜率57.30%[24] 2. **转债风格轮动模型**: - 年化收益24.00%,年化波动16.69%,IR 1.44,最大回撤-15.89%[31] - 2025年以来收益29.73%,近4周收益2.37%[30] --- 因子的回测效果 1. **低估值增强效果(近4周)**: - 偏股转债超额-1.40%,平衡转债超额-0.55%,偏债转债超额1.12%[23] - 偏股低估指数近4周超额1.33%(与正股等权指数对比)[20] 2. **估值因子分位数状态**: - 百元转股溢价率:滚动3年分位数64.9%,5年分位数67.3%[5][18] - 修正YTM − 信用债YTM中位数:-1.26%(配置性价比偏低)[6][18]