Workflow
CUDA兼容
icon
搜索文档
中国推理芯片突围与成本革命:破“内存墙”、兼容CUDA
21世纪经济报道· 2026-02-04 17:09
行业趋势与共识 - 全球AI算力重心正从训练加速转向推理,未来五到十年推理芯片将主导AI演进方向 [1] - 行业核心需求从依赖GPU、CUDA生态构建的“绝对算力”,转向对高性价比推理芯片的迫切需求 [2] - 推理芯片的增长已超越训练芯片,Groq估值在2025年9月至2026年1月四个月内从70亿美元飙升至200亿美元,增长近3倍 [3] - 谷歌在2025年4月发布第七代TPU “Ironwood”,明确将其定位为面向推理时代的基石 [1] - 英伟达以200亿美元的代价,实质上整合了Groq最核心的资产,包括其创始团队、核心技术人员,并获得其IP的永久授权 [2] 公司战略与目标 - 云天励飞在2025年果断将芯片战略全面聚焦于云端大算力、大模型专用的推理芯片 [3] - 公司致力于通过底层架构创新,力争实现百万Tokens推理成本降低100倍以上的目标 [1] - 公司目标是每年将百万Token的推理成本降低100倍,到2030年实现“百亿Token仅需一分钱人民币”的成本水平 [3] - 未来五年,公司将全力打磨并推广DeepVerse 100、200、300系列芯片,覆盖互联网、通信运营商及各行业头部客户 [6] 技术架构与创新 - 公司正在打造专为大模型推理优化的新型处理器架构GPNPU,其核心公式为“GPNPU = GPGPU + NPU + 3D堆叠存储” [5] - GPNPU架构致力于解决可迁移、可部署、可持续降本三大工程难题 [5] - 在通用生态层面,GPNPU能够实现一行代码完成CUDA程序兼容,以降低迁移成本 [5] - 针对“内存墙”瓶颈,公司正深度研发3D堆叠存储及更前沿的互连技术,以提升带宽与能效 [5] - 在架构工程上,公司采用“算力积木”架构,通过Chiplet扩展与互连思路,实现算力按需扩展 [6] 市场机遇与竞争格局 - 在推理芯片领域,格局尚未成型,谷歌TPU v7、Groq等新兴架构刚刚崭露头角,这为中国企业提供了历史性窗口 [4] - 中国在AI应用场景丰富度与落地速度上全球领先,但在模型层与芯片层仍相对落后,意味着巨大的追赶与超越空间 [3] - 公司认为中国应在训练芯片领域持续追赶,在推理芯片领域依托丰富的应用场景、强大的基建能力及开源模型生态实现弯道超车 [5] 公司核心竞争力与保障 - 公司将核心竞争力总结为技术、产能、生态、市场、资本五大关键要素的协同共振 [6] - 公司是目前国内屈指可数手握充足国产产能保障的企业之一,为芯片大规模量产与交付提供了确定性 [6]