Workflow
Synthetic Data
icon
搜索文档
GPT-5没有追求AGI,它代表的是OpenAI的商业化野心
36氪· 2025-08-08 18:28
模型性能对比 - GPT-5在AIME '25测试中达到94.6%准确率,领先Gemini 2.5 Pro的93.8%和Claude 4.1的94.1% [1] - FrontierMath测试中GPT-5表现26.3%,略低于Gemini 2.5 Pro的27.1% [1] - GPQA diamond测试GPT-5获得85.7%准确率,与Claude 4.1的85.9%接近 [1] - HMMT 2025测试GPT-5以93.3%领先其他模型 [1] 技术突破 - GPT-5采用新型合成数据训练方法,通过GPT-4o等前代模型生成高质量训练数据 [3] - 合成数据流程专门设计用于生成"正确类型数据",提升模型推理和规划能力 [3] - 在Tau²-bench电信领域测试中达到96.7%准确率,显著优于GPT-4.1的34% [7] - 上下文长度扩展至400k,思考过程token消耗减少50%-80% [20] Agent能力提升 - GPT-5优化了工具调用能力,支持自然语言描述触发工具使用 [8] - 具备出色的工具并行使用能力,可判断工具运行顺序与并行性 [8] - 在智能体式编码测试中表现优异,一次性解决其他模型无法完成的任务 [15] - 编程时采用"边想边做"的迭代方式,优于Claude 4 Opus的"想清楚再做"模式 [15] 商业化策略 - ChatGPT周活用户超过7亿,付费用户达500万,订阅收入27亿美元 [18] - API定价策略激进,输入1.25美元/百万tokens,输出10美元/百万tokens [18] - 价格直接对标Gemini 2.5 Pro,大幅低于Claude 4 Opus的75美元/百万tokens输出 [19] - 推出DeepResearch、Canvas编辑、生图功能等商业化导向的产品升级 [18] 行业趋势 - 2025年AI应用领域最热关键词为Agent,OpenAI引领此波热潮 [6] - 主流模型厂商均以Agentic AI为目标优化模型能力 [6] - 大语言模型进步呈现渐进式而非跨越式,可能遭遇技术瓶颈 [21] - AI应用市场呈现快鱼吃慢鱼特征,大厂在创新速度上不占优势 [21]