Workflow
Computer Vision
icon
搜索文档
三维重建综述:从多视角几何到 NeRF 与 3DGS 的演进
自动驾驶之心· 2025-09-23 07:34
三维重建技术演进综述 - 三维重建是计算机视觉与图形学的交叉核心,作为虚拟现实、增强现实、自动驾驶、数字孪生等前沿应用的数字底座 [5] - 以神经辐射场(NeRF)和三维高斯抛雪球(3DGS)为代表的新视角合成技术,使重建质量、速度、动态适应性同时跃升 [5] - 技术演进从传统多视角几何(SfM→MVS)到NeRF与3DGS,为数字孪生、智慧城市、元宇宙等领域提供技术演进全景图 [5] 应用需求驱动技术革新 - 城市级数字孪生需求公里级范围、厘米级精度、分钟级更新 [6] - 自动驾驶仿真需求动态交通流、实时语义、可编辑车道 [6] - AR/VR社交需求轻终端、大于90 FPS、照片级真实感 [6] - 工业数字工厂需求弱纹理、反光、复杂拓扑完整建模 [6] - 传统先几何后纹理管线无法满足新需求,NeRF与3DGS通过可微渲染统一学习几何-纹理-光照,实现从离线静态到实时动态的突破 [6] 传统多视角几何重建(SfM→MVS) - 理论基石包括对极几何x'^T F x = 0、三角测量X = argmin(∑‖π(P_i,X)−x_i‖^2)和束调整min ∑‖x−π(P,X)‖^2 + λ‖P−P_0‖^2 [9][10] - 成熟工具链包括COLMAP(学术最常用,CPU优化)、OpenMVG(模块化,适合算法研究)、Agisoft Metashape(商业级,支持无人机影像)和ContextCapture(Bentley城市级解决方案) [11] - 存在五大痛点:数据饥渴需大于70%航向重叠加60%旁向重叠、弱纹理空洞(玻璃、白墙、水面、天空)、光照敏感导致阴阳面色差和纹理接缝明显、动态失效导致行人车辆重影/鬼影、编辑困难改一棵树要重跑全流程 [13][15] NeRF隐式神经辐射场(2020-2024) - 基础框架将场景建模为连续5D函数F_Θ:(x,y,z,θ,φ)→(c,σ),通过体渲染积分得到像素颜色 [13][14] - 质量提升路线包括Mip-NeRF(锥体追踪+集成位置编码解决锯齿混叠,训练时间×2)、NeRF-W(外观嵌入+可变光照解决天气/曝光变化,推理需调latent)、NeRF++(反向球面背景+双层场景解决远景退化,参数量+30%)、NeRFLiX(退化模拟器+视角混合解决伪影噪声,需合成数据预训练)、BAD-NeRF(运动模糊物理模型解决模糊输入鲁棒,需已知模糊核)、UHDNeRF(隐式体+稀疏点云高频实现8K超高清,显存增加) [17] - 效率优化路线包括InstantNGP(多分辨率哈希编码实现5秒至1分钟训练时间、5 FPS渲染、1.2 GB显存)、TensoRF(CP分解+低秩近似实现10分钟训练、10 FPS、300 MB显存)、NSVF(稀疏体素八叉树实现30分钟训练、15 FPS、500 MB显存)、Zip-NeRF(抗锯齿网格采样实现20分钟训练、20 FPS、400 MB显存)、Lightning NeRF(点云先验初始化实现8分钟训练、10 FPS、600 MB显存) [18] - 稀疏视角合成(小于10张图)方法包括FreeNeRF(频率正则+遮挡正则实现DTU 3-view PSNR 19.92,零额外开销)、FlipNeRF(反射射线过滤实现PSNR 19.55,减少漂浮物)、MixNeRF(混合密度+深度估计实现PSNR 18.95,提升几何)、HG3-NeRF(几何-语义-光度分层实现PSNR 19.37,需语义标签) [20] - 动态场景(视频输入)方法包括Deformable-NeRF(变形场Ψ(x,t)实现D-NeRF PSNR 29.8,正则化扭曲)、NSFF(场景流+静态/动态分解实现PSNR 31.5,可解释运动)、DNeRF(时间编码γ(t)实现PSNR 29.6,无需额外mask)、NeRFPlayer(静态+变形+新区域实现PSNR 30.2,流式播放)、Tensor4D(4D张量分解实现PSNR 31.0,内存下降50%) [21] 3DGS三维高斯溅射(2023-2025) - 基础公式将场景表示为3D高斯集合G={μ_i,Σ_i,α_i,SH_i}_{i=1}^M,投影到图像平面后按深度排序做α-混合C=∑_{i∈N}c_iα'_i∏_{j=1}^{i-1}(1-α'_j) [22][23] - 渲染质量优化方法包括Mip-Splatting(3D/2D Mip滤波实现抗锯齿,LPIPS下降10%)、Scaffold-GS(锚点生长-剪枝实现内存下降79%,覆盖提升)、GaussianPro(渐进传播+深度一致实现低纹理PSNR提升1.7 dB)、GSDF(高斯+SDF双分支实现几何误差下降30%)、SuperGS(粗到细+梯度引导分裂实现4K超分实时) [25] - MipNeRF360对比显示3DGS的PSNR 27.21、SSIM 0.815、LPIPS 0.214、FPS 134、内存734 MB;GSDF的PSNR 29.38、SSIM 0.865、LPIPS 0.185;Scaffold-GS的PSNR 28.84、SSIM 0.848、LPIPS 0.220、FPS 102、内存156 MB;SuperGS的PSNR 29.44、SSIM 0.865、LPIPS 0.130、FPS 47、内存123 MB [26] - 效率再升级方法包括LightGaussian(蒸馏+量化+伪视角实现15倍压缩,200 FPS)、CompGS(K-means+游程编码实现存储下降80%)、EAGLES(轻量化编码实现显存下降70%)、SuGaR(表面网格提取实现编辑友好,Poisson重建)、Distwar(寄存器级并行实现GPU原子操作下降60%) [27][28] - 稀疏视角重建(小于10张图)方法包括FSGS(单目深度+邻域上采样实现200 FPS,需预训练DepthNet)、SparseGS(扩散模型补全实现实时360°,生成伪标签)、LM-Gaussian(大模型视觉先验实现迭代细化,视频扩散)、MCGS(多视角一致性修剪实现内存下降50%,渐进剪枝) [29] - 动态重建(视频)方法包括Deformable 3D-GS(变形场实现D-NeRF PSNR 39.51,时序正则)、4D-GS(神经体素+MLP实现PSNR 34.05,分解4D特征)、Gaussian-Flow(双域变形实现PSNR 34.27,显式运动向量)、DN-4DGS(去噪网络实现PSNR 25.59,时空聚合) [30] 三代技术横向对比 - 核心表征:SfM/MVS为点云+Mesh,NeRF为隐式σ(x)+c(x),3DGS为显式高斯集合 [31] - 几何精度:SfM/MVS★★★★☆,NeRF★★★☆☆,3DGS★★★☆☆ [31] - 照片真实感:SfM/MVS★★☆☆☆,NeRF★★★★★,3DGS★★★★☆ [31] - 训练时间:SfM/MVS为小时级,NeRF为小时至天级,3DGS为分钟级 [31] - 渲染FPS:SfM/MVS小于1,NeRF小于1,3DGS为50-300 [31] - 动态扩展:SfM/MVS不支持,NeRF需变形场,3DGS支持时序高斯 [31] - 编辑性:SfM/MVS极难,NeRF隐式不可见,3DGS支持移动/删除/增改 [31] - 硬件门槛:SfM/MVS只需CPU,NeRF需8个高端GPU,3DGS只需1个消费GPU [31] - 代表落地:SfM/MVS用于测绘、文保,NeRF用于影视、直播,3DGS用于AR/VR、自动驾驶 [32] 未来5年技术雷达 - 混合表征:NeRF+3DGS+SDF统一框架,光滑表面用SDF,高频细节用高斯,空洞用NeRF补全 [33] - 端侧实时:INT4量化+TensorRT/ONNX实现手机30 FPS重建 [33] - 生成式重建:Diffusion先验+3DGS实现单图/文本生成可驱动3D资产 [33] - 物理-语义联合:引入光照模型、重力、语义标签实现一键可编辑城市场景 [33] - 多模态融合:LiDAR深度、事件相机、IMU、Thermal同步实现SfM-free鲁棒重建 [33] - 三维重建将走向人人可用、处处实时的普适计算时代,让每部手机、每台车、每副AR眼镜都拥有实时数字化的瑞士军刀 [34]
港科&地平线&浙大联手开源SAIL-Recon:三分钟重建一座城
自动驾驶之心· 2025-09-03 07:33
文章核心观点 - SAIL-Recon提出一种结合场景回归与定位的大规模运动恢复结构(SfM)方法 通过少量锚图像提取神经场景表征 实现数千张图像的高效精确重建 在精度和效率上均超越传统及学习方法 [5][7][10][34] 技术方法 - 采用锚图像采样策略 通过Transformer提取神经场景表征 并基于此对所有图像执行联合位姿与结构估计 [9][11] - 使用DINOv2提取图像特征 结合相机token与寄存器token 通过自注意力层和DPT头预测深度图及场景坐标图 [13] - 引入注意力掩码机制 使查询图像仅与锚图像表征交互 并通过相机头直接回归位姿 [17][19] - 训练阶段采用多任务损失函数 推理阶段通过KV-Cache缓存键值以节省GPU内存 [11][20] 性能表现 - 在Tanks & Temples数据集上 平均每场景处理300+张图像 FFD版本达到70.4% RRA@5和74.7% RTA@5 误差仅0.008 耗时233秒 [21][26] - 在7-Scenes数据集定位任务中 平均精度达93.8% 与ACE0持平 但训练加定位总耗时仅8分钟 远低于ACE0的2小时 [32] - 新视角合成任务中 PSNR指标全面领先:Mip-NeRF 360数据集平均PSNR达19.5 超越DROID-SLAM的16.9和BARF的18.1 [33] - 锚图像数量从10张降至2张时精度仅缓慢下降 300 token/图像配置实现精度与速度平衡 [32] 效率优势 - 处理数千张图像仅需数分钟 显著快于COLMAP的1977秒和ACE0的5499秒 [21][32] - 无需逐场景训练 支持大规模场景一次性前馈推理 后优化阶段10k次迭代仅需2-10分钟 [7][24] - 在TUM-RGBD数据集实现与SLAM相当的精度 且无需相机内参 [32]
多样化大规模数据集!SceneSplat++:首个基于3DGS的综合基准~
自动驾驶之心· 2025-06-20 22:06
三维高斯溅射技术发展 - 三维高斯溅射(3DGS)成为最理想的三维表示方法,因其能联合编码场景的几何、外观和理解属性[2] - 视觉-语言推理是三维场景理解最具前景的方向,将视觉/几何属性与语言概念连接[2] - 现有方法分为三类:基于梯度的单场景优化、免优化的特征聚合、泛化方法[3] 评估基准创新 - 提出SceneSplat-Bench基准,包含1060个场景和325个语义类别,首次在三维空间评估性能[3] - 现有评估存在三大局限:样本量少(仅9-21个场景)、依赖训练视点、二维评估为主[4] - 基准测试显示泛化方法SceneSplat在f-mIoU指标上最高达0.354(ScanNet20)和0.338(Matterport3D)[24] 数据集突破 - 发布SceneSplat-49K数据集,包含46K个3DGS场景,总高斯数达29.24B,覆盖室内外环境[9][10] - 数据集平均质量达27.8dB PSNR和0.90 SSIM,几何误差仅0.061米,存储量8.36TB[10][12] - 包含12K个带视觉语言嵌入的场景,采用动态加权机制融合全局/局部特征[19] 技术性能比较 - 泛化方法SceneSplat运行时仅0.24分钟/场景,显著优于优化方法(76-621分钟)[5][24] - 免优化方法在效率(4-5.6分钟)和准确率上均优于优化方法,如Gradient-Weighted 3DGS在ScanNet20达0.418 f-mIoU[5][24] - 数据规模扩大使ScanNet++性能提升69%(f-mIoU从0.168到0.284)[28] 跨领域应用 - 室内训练模型可迁移至室外场景,零样本性能达0.263 mIoU,但特定领域数据仍关键[29] - 城市尺度数据集HoliCity包含6,300个伦敦场景,覆盖20平方公里,支持室外评估[17][22] - 合成数据Aria ASE贡献25K程序化室内场景,采用鱼眼图像校正技术[16]
无需昂贵设备,单目方案生成超逼真3D头像,清华&IDEA新研究入选CVPR2025
量子位· 2025-05-22 22:29
核心观点 - HRAvatar是一种基于单目视频的3D高斯头像重建方法,通过可学习形变基和线性蒙皮技术实现灵活且精确的几何变形,并提升重建质量[1] - 该方法解决了现有3D高斯方法在几何变形灵活性、表情追踪准确性和真实重光照方面的三大限制[4][5] - HRAvatar在实验数据集中所有指标上均优于现有方法,并达到155 FPS的实时性能[24][25] - 相关研究论文已被CVPR 2025录用,代码已全面开源[2][35] 技术突破 几何变形 - 采用可学习的形变基与混合蒙皮权重策略,实现高斯点从标准姿态到各种表情和姿态的灵活变形[6][12] - 类似FLAME模型,引入形状基、表情基和姿态基三个可学习属性建模几何位移[13] - 依赖FLAME模型的几何与形变先验进行初始化,加速训练收敛[15] 表情追踪 - 提出端到端的表情编码器,更精确提取表情参数[10] - 编码器与3D头像重建联合优化,利用高斯重建损失进行监督[11] 外观建模 - 将外观分解为反照率、粗糙度和菲涅尔基础反射率三个属性,采用BRDF物理渲染模型进行着色[16] - 引入SplitSum近似技术对环境光照图进行预计算,实现高质量实时渲染[17] - 使用伪真实反照率监督渲染反照率,限制粗糙度和基础反射率范围以获得更真实材质[22] 实验结果 - 在INSTA、HDTF和自采集数据集上测试,HRAvatar在PSNR、MAE、SSIM和LPIPS指标上均优于现有方法[23][24] - 具体数据:INSTA数据集PSNR 30.36、MAE 0.845、SSIM 0.9482、LPIPS 0.0569;HDTF数据集PSNR 28.55、MAE 1.373、SSIM 0.9089、LPIPS 0.0825[26] - 消融实验显示完整模型性能最优,去除任何组件都会导致指标下降[32] 应用场景 - 重建的头像化身可进行驱动、在新环境光下重光照或简单材质编辑[28] - 适用于电影、游戏、沉浸式会议、AR/VR等领域[4]
ICML 2025 Spotlight | 用傅里叶分解探讨图像对抗扰动,代码已开源
机器之心· 2025-05-18 12:25
研究背景 - 对抗样本通过微小扰动生成,难以被人眼察觉但显著降低深度学习模型性能,对计算机视觉领域模型安全性和鲁棒性构成重大挑战[5] - 现有对抗净化技术分为基于训练的方法和基于扩散模型的方法,前者需大量训练数据和时间,后者不依赖训练数据且泛化能力更强[5] - 对抗净化在自动驾驶、金融分析和医疗影像等安全关键领域尤为重要,可降低对抗攻击威胁并提升系统整体安全性[5] 动机和理论分析 - 现有策略在像素空间无法解耦干净像素与对抗扰动,导致破坏扰动时损害原始图像语义信息[7] - 对抗扰动更倾向于破坏高频幅度谱和相位谱,低频信息对扰动更鲁棒[7] - 相位谱被噪声破坏速度更快,逆向过程中保留相位谱非常关键[12] 方法 - 利用傅里叶分解技术将图像分解为幅度谱和相位谱,通过滤波器保留低频幅度谱信息[14][15] - 将估计图像低频相位谱投影到输入图像低频相位谱范围内,避免直接保留扰动[16] - 通过逆离散傅里叶变换将更新后的幅度谱和相位谱结合,获得时间域表示[16] 实验效果 CIFAR10 - 在WideResNet-28-10模型上,标准准确率94.14±1.17,鲁棒准确率93.75±0.80,均优于SOTA方法[18] - 在WideResNet-70-16模型上,标准准确率94.92±0.39,鲁棒准确率92.77±0.58,表现最佳[18] ImageNet - 使用ResNet-50分类器,标准准确率77.15±1.57,鲁棒准确率65.04+2.54,显著优于其他方法[19] 可视化 - 净化后图像与原始干净图像在视觉上最为相似,联合分布也最接近原始图像[20] 未来方向 - 探索更有效的图像分解手段以更好解耦对抗扰动和语义信息[21] - 提供更深入的理论解释以进一步优化对抗净化效果[21]
CVPR 2025 Oral | DiffFNO:傅里叶神经算子助力扩散,开启任意尺度超分辨率新篇章
机器之心· 2025-05-04 12:57
超分辨率技术发展 - 超分辨率技术(SR)已成为计算机视觉领域重要挑战,应用场景包括医疗影像、卫星遥感、视频监控和游戏渲染等[1] - 传统深度学习模型(如SRCNN、EDSR)在固定放大倍数表现优异,但无法支持任意放大尺度或在大倍率下出现细节模糊[1] - 扩散模型能恢复高频细节但推理速度慢,难以满足实时需求[1] DiffFNO技术框架 - 由三大核心组件构成:加权傅里叶神经算子(WFNO)、门控融合机制、自适应ODE求解器[2][5] - WFNO通过频域卷积捕获全局信息,可学习频率权重放大高频分量,相比普通FNO在大倍率超分中PSNR提升0.3–0.5 dB[9][10] - 门控融合机制并行引入轻量化注意力算子(AttnNO),动态结合谱域与空域特征[5][12] - 自适应ODE求解器将扩散逆过程转化为确定性ODE,推理步数从1000步降至30步(减少33倍),推理时间从266 ms缩短至141 ms[15] 性能表现 - 在DIV2K等五大数据集上PSNR领先SOTA方法2~4 dB,大倍数放大(×8、×12)优势更显著[17] - 定性结果显示对建筑细节、植物纹理、动物皮毛等高频结构复原出色,边缘锐利且伪影少[20] - 消融研究表明:去除模式重平衡导致PSNR下降0.4 dB,去除AttnNO影响局部纹理,去除ATS会使推理步数回升至千步级[23] 技术突破 - 首次实现支持任意连续倍率(如2.1、11.5倍)的超分辨率重建[2] - 通过神经算子赋能扩散架构,打破"高质量重建"与"快速推理"矛盾[1][23] - 采用全模式保留策略,兼顾图片整体解构与局部细节[18] 学术认可 - 研究成果入选CVPR 2025 Oral报告[2] - 论文已发布于arXiv(编号2411.09911)并提供开源项目主页[7]