Workflow
千寻的VLA模型
icon
搜索文档
对话千寻智能高阳:科学家创业不太「靠谱」,但创业就像一场游戏
36氪· 2025-08-08 17:28
具身智能行业趋势 - 具身智能领域正经历技术范式转变,ChatGPT的出现推动了学习范式的革新,使得具身智能成为必然发展方向[13] - 行业现阶段普遍采用Transformer做预训练,但工程化后期效果将出现显著分化[34] - 预计四年后将进入Robot GPT3.5阶段,机器人能完成70%的家庭场景任务[41] 千寻智能商业模式 - 坚持软硬一体化路径,定位为"具身智能领域的苹果"而非安卓[10][11] - 成立19个月累计融资超10亿人民币,资方包括华为哈勃、京东、宁德时代等[7] - 技术路线强调VLA(视觉语言动作)模型创新,独创快慢系统提升动作流畅度[37][46] 技术研发重点 - VLA模型采用95%互联网人类视频数据预训练,显著提升泛化能力[58][61] - 算法创新包括任务分解能力(one two VLA)和动作tokenizer优化[40][45] - 现阶段世界模型仅小规模应用,分层技术路径将被端到端方案淘汰[49][50] 行业竞争格局 - 头部机器人公司仍聚焦硬件和教育市场,忽视"大脑"开发[14] - 同质化Demo现象普遍,叠衣服等复杂任务成为技术能力试金石[56] - "伯克利四子"分别专注不同技术方向:运动控制、操作交互、3D感知等[63][65] 数据策略差异 - 反对现阶段大规模建设数采工厂,认为跨本体数据迁移效率低[53] - 互联网数据价值在于提供多样性,遥操作数据确保物理世界精确性[59] - 数据清洗和配比直接影响模型性能,当前泛化能力提升率达60-80%[61] 人才战略 - 偏好年轻科研人才(硕士/博士),要求具备前沿技术敏感度[71][72] - 算法岗更看重近期学术成果而非工作经验,因技术迭代速度过快[72] - 团队构建强调"少而精",需同时具备研究能力和工程化思维[70]