遗憾规避因子
搜索文档
高频因子跟踪:上周斜率凸性因子表现优异
国金证券· 2025-11-13 16:38
根据提供的研报内容,以下是关于量化因子和模型的总结。 量化因子与构建方式 1. **因子名称:价格区间因子**[11][12] * **因子构建思路**:该因子衡量股票在日内不同价格区间成交的活跃程度,能体现投资者对股票未来走势的预期[11]。具体地,股票在日内高价格区间投资行为聚集程度与成交活跃度越低,未来上涨可能性越大;低价格区间的平均每笔成交量越大,大资金活跃程度越高,股票未来上涨可能性越大[11]。 * **因子具体构建过程**:该因子是三个细分因子的合成因子。首先构建三个细分因子: * **高价格80%区间成交量因子 (VH80TAW)**:衡量在日内最高价80%及以上价格区间成交的活跃度。 * **高价格80%区间成交笔数因子 (MIH80TAW)**:衡量在日内最高价80%及以上价格区间成交的频繁程度。 * **低价格10%区间每笔成交量因子 (VPML10TAW)**:衡量在日内最低价10%及以下价格区间平均每笔成交的规模。 然后,以25%、25%和50%的权重对VH80TAW、MIH80TAW和VPML10TAW三个因子进行合成[14]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的价格区间因子。 * **因子评价**:该因子展现出了较强的预测效果,在样本外表现出色,超额净值曲线稳定向上,今年以来表现比较稳定[11][17]。 2. **因子名称:量价背离因子**[22] * **因子构建思路**:该因子主要衡量股票价格与成交量的相关性。一般而言,相关性越低,未来上涨的可能性越高[3]。 * **因子具体构建过程**:该因子是两个细分因子的合成因子。首先构建两个细分因子: * **价格与成交笔数相关性因子 (CorrPM)**:计算高频快照数据中价格与成交笔数的相关性。 * **价格与成交量相关性因子 (CorrPV)**:计算高频快照数据中价格与成交量的相关性。 然后,对上述两个因子进行等权合成[22]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的量价背离因子。 * **因子评价**:该因子近几年表现一直不太稳定,多空净值曲线趋近走平,但去年超额收益处于历史较高水平,今年以来表现良好[3][24]。 3. **因子名称:遗憾规避因子**[25] * **因子构建思路**:该因子基于行为金融学的遗憾规避理论,通过考察股票当天被投资者卖出后反弹的比例和程度来构建。如某只股票买入浮亏占比较高或程度较大时,预期收益更高;卖出后股价反弹的占比越高或程度越大时,预期收益更低[25]。 * **因子具体构建过程**:该因子是两个细分因子的合成因子。首先利用逐笔成交数据区分每笔交易的主动买卖方向,并加入小单和尾盘的限制来构建细分因子: * **卖出反弹占比因子 (LCVOLESW)**。 * **卖出反弹偏离因子 (LCPESW)**。 然后,对上述两个因子进行等权合成[31]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的遗憾规避因子。 * **因子评价**:该因子样本外超额收益稳定,表明A股投资者的遗憾规避情绪依然会显著影响股价的预期收益,但今年以来表现一般[3][34]。 4. **因子名称:斜率凸性因子**[36] * **因子构建思路**:该因子从投资者耐心与供求关系弹性的角度出发,利用限价订单簿的委托量和委托价信息,刻画订单簿的斜率和凸性对预期收益的影响。买方斜率越大(需求弹性小)或卖方斜率越小(供给弹性大),对应股票更高的预期收益[36]。 * **因子具体构建过程**:该因子是两个细分因子的合成因子。首先将委托量数据按档位累加,用委托价和累计委托量计算买卖方的订单簿斜率,并区分为: * **低档斜率因子 (Slope_ablW)**。 * **高档位卖方凸性因子 (Slope_alhW)**。 然后,对上述两个因子进行等权合成[39]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的斜率凸性因子。 * **因子评价**:该因子自2016年以来收益保持平稳,但在样本外整体表现也比较平淡,年度表现欠佳[3][41]。 5. **因子名称:高频“金”组合合成因子**[3][43] * **因子构建思路**:将上述表现较好的高频因子(价格区间因子、量价背离因子、遗憾规避因子)进行合成,构建用于中证1000指数增强的策略因子[3]。 * **因子具体构建过程**:将价格区间因子、量价背离因子、遗憾规避因子这三类高频因子进行等权合成[3][43]。 6. **因子名称:高频&基本面共振组合合成因子**[4][47] * **因子构建思路**:将高频因子与基本面因子结合,利用其低相关性以提升多因子投资组合的表现[47]。 * **因子具体构建过程**:将高频“金”组合合成因子(基于价格区间、量价背离、遗憾规避因子)与三个比较有效的基本面因子(一致预期、成长和技术因子)进行等权合成[4][47]。 因子的回测效果 1. **价格区间因子**[13] * 多空收益率(上周):-2.20% * 多空收益率(本月以来):-2.20% * 多空收益率(今年以来):12.72% * 多头超额收益率(上周):-0.05% * 多头超额收益率(本月以来):-0.05% * 多头超额收益率(今年以来):5.08% 2. **量价背离因子**[13][22] * 多空收益率(上周):0.77% * 多空收益率(本月以来):0.77% * 多空收益率(今年以来):17.97% * 多头超额收益率(上周):0.21% * 多头超额收益率(本月以来):0.21% * 多头超额收益率(今年以来):5.97% 3. **遗憾规避因子**[13] * 多空收益率(上周):-0.20% * 多空收益率(本月以来):-0.20% * 多空收益率(今年以来):17.27% * 多头超额收益率(上周):-0.47% * 多头超额收益率(本月以来):-0.47% * 多头超额收益率(今年以来):0.34% 4. **斜率凸性因子**[3][38] * 多空收益率(上周):-1.67% (基于中证800指数) * 多空收益率(本月以来):-1.67% (基于中证800指数) * 多空收益率(今年以来):-13.85% (基于中证800指数) * 多头超额收益率(上周):-0.66% (基于中证800指数) * 多头超额收益率(本月以来):-0.66% (基于中证800指数) * 多头超额收益率(今年以来):-4.58% (基于中证800指数) 量化模型与构建方式 1. **模型名称:高频“金”组合中证1000指数增强策略**[3][43] * **模型构建思路**:基于合成的高频“金”组合因子,构建中证1000指数增强策略[3]。 * **模型具体构建过程**:使用高频“金”组合合成因子进行选股。策略调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数。为降低调仓成本,加入了换手率缓冲机制[43]。 2. **模型名称:高频&基本面共振组合中证1000指数增强策略**[4][47] * **模型构建思路**:基于合成的高频&基本面共振组合因子,构建中证1000指数增强策略,旨在结合高频因子和基本面因子的优势[4][47]。 * **模型具体构建过程**:使用高频&基本面共振组合合成因子进行选股。策略调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数[47]。 模型的回测效果 1. **高频“金”组合中证1000指数增强策略**[43][46][48] * 年化收益率:9.75% * 年化波动率:23.92% * Sharpe比率:0.41 * 最大回撤率:47.77% * 双边换手率(周度):14.66% * 年化超额收益率:10.09% * 跟踪误差:4.28% * 信息比率(IR):2.36 * 超额最大回撤:6.04% * 超额收益率(上周):0.12% * 超额收益率(本月以来):0.12% * 超额收益率(今年以来):6.15% 2. **高频&基本面共振组合中证1000指数增强策略**[47][50][52] * 年化收益率:14.04% * 年化波动率:23.54% * Sharpe比率:0.60 * 最大回撤率:39.60% * 双边换手率(周度):22.54% * 年化超额收益率:14.28% * 跟踪误差:4.18% * 信息比率(IR):3.41 * 超额最大回撤:4.52% * 超额收益率(上周):-0.45% * 超额收益率(本月以来):-0.45% * 超额收益率(今年以来):6.60%