高频因子
搜索文档
高频选股因子周报(20260104-20260109):买入意愿因子开年强势,多粒度因子表现一般。AI增强组合超额开年不利,出现大幅回撤。-20260111
国泰海通证券· 2026-01-11 21:18
量化模型与因子总结 量化因子与构建方式 1. **因子名称:日内高频偏度因子** **因子构建思路:** 捕捉股票日内收益的分布特征,特别是偏度信息,以预测未来收益[13] **因子具体构建过程:** 报告未提供具体计算公式,但指出计算方式参考专题报告《选股因子系列研究(十九)——高频因子之股票收益分布特征》[13]。通常,此类因子基于日内高频收益率数据计算其偏度统计量。 2. **因子名称:日内下行波动占比因子** **因子构建思路:** 分解已实现波动,关注下行波动部分在总波动中的占比,以衡量风险特征[18] **因子具体构建过程:** 报告未提供具体计算公式,但指出计算方式参考专题报告《选股因子系列研究(二十五)——高频因子之已实现波动分解》[18]。 3. **因子名称:开盘后买入意愿占比因子** **因子构建思路:** 基于开盘后一段时间内的高频交易数据,通过直观逻辑或机器学习方法,将高频信息低频化,构建反映买入意愿的因子[23] **因子具体构建过程:** 报告未提供具体计算公式,但指出计算方式参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[23]。 4. **因子名称:开盘后买入意愿强度因子** **因子构建思路:** 与买入意愿占比因子类似,但更侧重于衡量买入意愿的强度而非比例[27] **因子具体构建过程:** 报告未提供具体计算公式,但指出计算方式参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[27]。 5. **因子名称:开盘后大单净买入占比因子** **因子构建思路:** 分析开盘后大单资金的净买入行为占比,捕捉主力资金动向[32] 6. **因子名称:开盘后大单净买入强度因子** **因子构建思路:** 衡量开盘后大单净买入行为的强度[36] 7. **因子名称:改进反转因子** **因子构建思路:** 对传统反转因子进行改进,以提升预测效果[41] 8. **因子名称:尾盘成交占比因子** **因子构建思路:** 利用尾盘时段成交金额在全天成交中的占比信息构建因子[46] 9. **因子名称:平均单笔流出金额占比因子** **因子构建思路:** 通过分析平均单笔流出金额的占比来构建因子[51] 10. **因子名称:大单推动涨幅因子** **因子构建思路:** 构建反映大单交易对股价上涨推动作用的因子[57] 11. **因子名称:改进 GRU(50,2)+NN(10)因子** **因子构建思路:** 使用改进的GRU(门控循环单元)神经网络与全连接神经网络(NN)相结合的深度学习模型处理高频数据,生成选股因子[62] **因子具体构建过程:** 模型结构为GRU(50,2)与NN(10)的组合,具体网络架构和训练细节未在报告中详述[62]。 12. **因子名称:残差注意力 LSTM(48,2)+NN(10)因子** **因子构建思路:** 使用结合了残差连接和注意力机制的LSTM(长短期记忆网络)与全连接神经网络相结合的深度学习模型处理高频数据,生成选股因子[64] **因子具体构建过程:** 模型结构为残差注意力LSTM(48,2)与NN(10)的组合,具体网络架构和训练细节未在报告中详述[64]。 13. **因子名称:多颗粒度模型-5日标签因子** **因子构建思路:** 使用基于双向AGRU(可能指注意力GRU)训练的多颗粒度模型,以5日收益率为预测标签,生成选股因子[67] **因子具体构建过程:** 因子基于双向AGRU训练得到,预测标签为5日收益率[67]。 14. **因子名称:多颗粒度模型-10日标签因子** **因子构建思路:** 使用基于双向AGRU训练的多颗粒度模型,以10日收益率为预测标签,生成选股因子[68] **因子具体构建过程:** 因子基于双向AGRU训练得到,预测标签为10日收益率[68]。 量化模型与构建方式 1. **模型名称:周度调仓的中证500 AI增强宽约束组合** **模型构建思路:** 基于“多颗粒度模型-10日标签”因子构建中证500指数增强组合,在较宽松的风险约束下最大化预期收益[72] **模型具体构建过程:** * **核心信号:** 使用“多颗粒度模型-10日标签”因子作为股票的预期超额收益(μi)来源[72]。 * **优化目标:** 最大化组合预期收益,目标函数为: $$max\sum\mu_{i}w_{i}$$ 其中,wi为股票i的权重,μi为股票i的预期超额收益[73]。 * **风险约束:** 包括个股权重约束(1%)、行业偏离约束(1%)、市值因子暴露约束(0.3)、市值3次方因子暴露约束(0.3)、PB因子暴露约束(0.3)以及换手率约束(0.3)等“宽约束”条件[73]。 * **交易设置:** 周度调仓,假设以次日均价成交,并扣除双边3‰的交易成本[74]。 2. **模型名称:周度调仓的中证500 AI增强严约束组合** **模型构建思路:** 基于“多颗粒度模型-10日标签”因子构建中证500指数增强组合,在更严格的风险约束下控制组合风险[72] **模型具体构建过程:** * **核心信号:** 使用“多颗粒度模型-10日标签”因子作为股票的预期超额收益(μi)来源[72]。 * **优化目标:** 最大化组合预期收益,目标函数同上[73]。 * **风险约束:** 在宽约束基础上增加了更严格的约束,包括更严格的市值暴露约束(0.1)、市值2次方因子暴露约束(0.1),并新增了ROE因子暴露约束(0.3)、SUE因子暴露约束(0.3)、波动率因子暴露约束(0.3)以及成份股权重约束(0.8)等“严约束”条件[73]。 * **交易设置:** 周度调仓,假设以次日均价成交,并扣除双边3‰的交易成本[74]。 3. **模型名称:周度调仓的中证1000 AI增强宽约束组合** **模型构建思路:** 基于“多颗粒度模型-10日标签”因子构建中证1000指数增强组合,在较宽松的风险约束下最大化预期收益[72] **模型具体构建过程:** 与中证500 AI增强宽约束组合类似,但基准指数和对应的约束条件数值针对中证1000指数设定[73]。 4. **模型名称:周度调仓的中证1000 AI增强严约束组合** **模型构建思路:** 基于“多颗粒度模型-10日标签”因子构建中证1000指数增强组合,在更严格的风险约束下控制组合风险[72] **模型具体构建过程:** 与中证500 AI增强严约束组合类似,但基准指数和对应的约束条件数值针对中证1000指数设定[73]。 因子的回测效果 (数据来源:表2,统计周期为上周、1月、2026年至今(YTD),以及2026年周胜率)[10][12] 1. **日内高频偏度因子**,IC(历史/2026年): 0.019/-0.007,e^(-rank mae)(历史/2026年): 0.324/0.312,多空收益(上周/1月/2026YTD): 0.29%/0.29%/0.29%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 0.99%/0.99%/0.99%,2026年周胜率: 1/1[10] 2. **日内下行波动占比因子**,IC(历史/2026年): 0.016/-0.001,e^(-rank mae)(历史/2026年): 0.323/0.313,多空收益(上周/1月/2026YTD): 0.22%/0.22%/0.22%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 0.95%/0.95%/0.95%,2026年周胜率: 1/1[10] 3. **开盘后买入意愿占比因子**,IC(历史/2026年): 0.025/0.032,e^(-rank mae)(历史/2026年): 0.321/0.324,多空收益(上周/1月/2026YTD): 1.04%/1.04%/1.04%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): -0.41%/-0.41%/-0.41%,2026年周胜率: 0/1[10] 4. **开盘后买入意愿强度因子**,IC(历史/2026年): 0.030/0.027,e^(-rank mae)(历史/2026年): 0.326/0.323,多空收益(上周/1月/2026YTD): 0.65%/0.65%/0.65%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 0.62%/0.62%/0.62%,2026年周胜率: 1/1[10] 5. **开盘后大单净买入占比因子**,IC(历史/2026年): 0.035/-0.006,e^(-rank mae)(历史/2026年): 0.322/0.306,多空收益(上周/1月/2026YTD): -0.52%/-0.52%/-0.52%,2026年周胜率: 0/1,多头超额(上周/1月/2026YTD): -0.53%/-0.53%/-0.53%,2026年周胜率: 0/1[10] 6. **开盘后大单净买入强度因子**,IC(历史/2026年): 0.024/0.004,e^(-rank mae)(历史/2026年): 0.320/0.308,多空收益(上周/1月/2026YTD): -0.07%/-0.07%/-0.07%,2026年周胜率: 0/1,多头超额(上周/1月/2026YTD): -0.66%/-0.66%/-0.66%,2026年周胜率: 0/1[10] 7. **改进反转因子**,IC(历史/2026年): 0.030/0.037,e^(-rank mae)(历史/2026年): 0.330/0.328,多空收益(上周/1月/2026YTD): 1.77%/1.77%/1.77%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 1.89%/1.89%/1.89%,2026年周胜率: 1/1[10] 8. **尾盘成交占比因子**,IC(历史/2026年): 0.026/0.084,e^(-rank mae)(历史/2026年): 0.322/0.334,多空收益(上周/1月/2026YTD): 2.67%/2.67%/2.67%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 1.35%/1.35%/1.35%,2026年周胜率: 1/1[10] 9. **平均单笔流出金额占比因子**,IC(历史/2026年): 0.008/0.013,e^(-rank mae)(历史/2026年): 0.317/0.319,多空收益(上周/1月/2026YTD): 0.45%/0.45%/0.45%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 0.14%/0.14%/0.14%,2026年周胜率: 1/1[12] 10. **大单推动涨幅因子**,IC(历史/2026年): 0.018/-0.007,e^(-rank mae)(历史/2026年): 0.325/0.327,多空收益(上周/1月/2026YTD): 0.22%/0.22%/0.22%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 0.43%/0.43%/0.43%,2026年周胜率: 1/1[12] 11. **改进 GRU(50,2)+NN(10)因子**,IC(历史/2026年): 0.065/0.001,e^(-rank mae)(历史/2026年): 0.336/0.324,多空收益(上周/1月/2026YTD): 0.16%/0.16%/0.16%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 0.26%/0.26%/0.26%,2026年周胜率: 1/1[12] 12. **残差注意力 LSTM(48,2)+NN(10)因子**,IC(历史/2026年): 0.062/-0.016,e^(-rank mae)(历史/2026年): 0.334/0.324,多空收益(上周/1月/2026YTD): -0.26%/-0.26%/-0.26%,2026年周胜率: 0/1,多头超额(上周/1月/2026YTD): 0.86%/0.86%/0.86%,2026年周胜率: 1/1[12] 13. **多颗粒度模型-5日标签因子**,IC(历史/2026年): 0.079/-0.007,e^(-rank mae)(历史/2026年): 0.343/0.322,多空收益(上周/1月/2026YTD): 0.25%/0.25%/0.25%,2026年周胜率: 1/1,多头超额(上周/1月/2026YTD): 0.68%/0.68%/0.68%,2026年周胜率: 1/1[12] 14. **多颗粒度模型-10日标签因子**,IC(历史/2026年): 0.073/-0.030,e^(-rank mae)(历史/2026年): 0.342/0.313,多空收益(上周/1月/2026YTD): -0.78%/-0.78%/-0.78%,2026年周胜率: 0/1,多头超额(上周/1月/2026YTD): -0.05%/-0.05%/-0.05%,2026年周胜率: 0/1[12] 模型的回测效果 (数据来源:表3,统计周期为上周、1月、2026年至今(YTD),以及2026年周胜率)[13] 1. **周度调仓的中证500 AI增强宽约束组合**,超额收益(上周/1月/2026YTD): -2.61%/-2.61%/-2.61%,2026年周胜率: 0/2[13] 2. **周度调仓的中证500 AI增强严约束组合**,超额收益(上周/1月/2026YTD): -1.84%/-1.84%/-1.84%,2026年周胜率: 0/2[13] 3. **周度调仓的中证1000 AI增强宽约束组合**,超额收益(上周/1月/2026YTD): -2.10%/-2.10%/-2.10%,2026年周胜率: 0/2[13] 4. **周度调仓的中证1000 AI增强严约束组合**,超额收益(上周/1月/2026YTD): -1.63%/-1.63%/-1.63%,2026年周胜率: 0/2[13]
高频因子跟踪:Gemini3 Flash等大模型的金融文本分析能力测评
国金证券· 2025-12-30 17:02
量化模型与因子总结 量化因子与构建方式 1. **因子名称**:价格区间因子[2][3] * **因子构建思路**:衡量股票在日内不同价格区间成交的活跃程度,以体现投资者对未来走势的预期[3] * **因子具体构建过程**:该因子由三个细分因子按特定权重合成[33][36] 1. **高价格80%区间成交量因子 (VH80TAW)**:计算股票在日内高价格(前80%)区间的总成交量,该因子值与未来收益呈负相关[33] 2. **高价格80%区间成交笔数因子 (MIH80TAW)**:计算股票在日内高价格(前80%)区间的总成交笔数,该因子值与未来收益呈负相关[33] 3. **低价格10%区间每笔成交量因子 (VPML10TAW)**:计算股票在日内低价格(后10%)区间的平均每笔成交量,该因子值与未来收益呈正相关[33] 4. **合成**:将上述三个细分因子按权重(VH80TAW: 25%, MIH80TAW: 25%, VPML10TAW: 50%)进行合成[36] 5. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的价格区间因子[32][36] 2. **因子名称**:量价背离因子[2][3] * **因子构建思路**:衡量股票价格与成交量的相关性,相关性越低,未来上涨的可能性越高[3] * **因子具体构建过程**:该因子由两个衡量价格与成交量相关性的细分因子等权合成[40] 1. **价格与成交笔数相关性因子 (CorrPM)**:计算高频快照数据中价格与成交笔数的相关性[40] 2. **价格与成交量相关性因子 (CorrPV)**:计算高频快照数据中价格与成交量的相关性[40] 3. **合成**:对上述两个细分因子进行等权合成[40][42] 4. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的量价背离因子[32][42] 3. **因子名称**:遗憾规避因子[2][3] * **因子构建思路**:基于行为金融学的遗憾规避理论,考察投资者卖出股票后股价反弹的比例和程度,以捕捉情绪对预期收益的影响[3][46] * **因子具体构建过程**:该因子由两个细分因子等权合成[46][51] 1. **卖出反弹占比因子 (LCVOLESW)**:利用逐笔成交数据区分主动卖单,计算卖出后股价反弹的交易占比[46] 2. **卖出反弹偏离因子 (LCPESW)**:利用逐笔成交数据区分主动卖单,计算卖出后股价反弹的偏离程度[46] 3. **合成**:对上述两个细分因子进行等权合成[51] 4. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的遗憾规避因子[32][51] 4. **因子名称**:斜率凸性因子[2][3] * **因子构建思路**:从投资者耐心与供求关系弹性的角度出发,利用限价订单簿数据刻画委托量和委托价的关系(斜率和凸性)对预期收益的影响[3][54] * **因子具体构建过程**:该因子由两个细分因子等权合成[54][58] 1. **低档斜率因子 (Slope_abl)**:基于订单簿低档位的累计委托量和委托价计算买方或卖方的订单簿斜率[54] 2. **高档位卖方凸性因子 (Slope_alh)**:基于订单簿高档位的累计委托量和委托价计算卖方的订单簿凸性[54] 3. **合成**:对上述两个细分因子进行等权合成[58] 4. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的斜率凸性因子[58] 5. **因子名称**:高频“金”组合合成因子[3] * **因子构建思路**:将多个表现较好的高频因子结合,以构建更稳健的选股信号[3] * **因子具体构建过程**:将价格区间因子、量价背离因子、遗憾规避因子三类高频因子进行等权合成[3][62] 6. **因子名称**:高频&基本面共振组合合成因子[4] * **因子构建思路**:将相关性较低的高频因子与有效的基本面因子结合,以提升多因子组合的表现[4][67] * **因子具体构建过程**:将价格区间因子、量价背离因子、遗憾规避因子三类高频因子,与一致预期、成长、技术三个基本面因子进行等权合成[4][67] 因子的回测效果 (注:以下因子表现均为在中证1000指数成分股内,进行行业市值中性化后的测试结果,基准为所有成分股等权配置[32]) 1. **价格区间因子**[32][36][39] * 上周多头超额收益率:-1.00%[32] * 本月以来多头超额收益率:-0.90%[32] * 今年以来多头超额收益率:4.56%[32] 2. **量价背离因子**[32][40][44] * 上周多头超额收益率:-2.21%[32] * 本月以来多头超额收益率:-1.48%[32] * 今年以来多头超额收益率:2.99%[32] 3. **遗憾规避因子**[32][46][53] * 上周多头超额收益率:0.45%[32] * 本月以来多头超额收益率:1.47%[32] * 今年以来多头超额收益率:0.42%[32] 4. **斜率凸性因子**[2][56][61] * 上周多头超额收益率:0.66%[2] * 本月以来多头超额收益率:0.25%[2] * 今年以来多头超额收益率:-5.54%[2] 量化模型与构建方式 1. **模型名称**:高频“金”组合中证1000指数增强策略[3][62] * **模型构建思路**:基于合成的高频“金”组合因子构建指数增强策略,以获取稳定的超额收益[3][62] * **模型具体构建过程**: 1. **因子合成**:如前述,将三类高频因子等权合成为高频“金”组合因子[3][62] 2. **选股与加权**:基于该因子值在中证1000成分股内选股并构建投资组合[62] 3. **策略设置**:调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数[62] 4. **优化机制**:加入换手率缓冲机制以降低调仓成本[62] 2. **模型名称**:高频&基本面共振组合中证1000指数增强策略[4][67] * **模型构建思路**:将高频因子与基本面因子结合构建指数增强策略,旨在获得更优的风险调整后收益[4][67] * **模型具体构建过程**: 1. **因子合成**:如前述,将三类高频因子与三个基本面因子等权合成为共振组合因子[4][67] 2. **选股与加权**:基于该因子值在中证1000成分股内选股并构建投资组合[67] 3. **策略设置**:调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数[67] 模型的回测效果 1. **高频“金”组合中证1000指数增强策略**[3][63][66] * 年化超额收益率:9.85%[3][63] * 跟踪误差:4.32%[63] * 信息比率(IR):2.28[63] * 超额最大回撤:6.04%[3][63] * 上周超额收益:-2.06%[3][66] * 本月以来超额收益:-1.64%[3][66] * 今年以来超额收益:5.26%[3][66] 2. **高频&基本面共振组合中证1000指数增强策略**[4][69][71] * 年化超额收益率:13.93%[4][69] * 跟踪误差:4.20%[69] * 信息比率(IR):3.31[69] * 超额最大回撤:4.52%[4][69] * 上周超额收益:-1.37%[4][71] * 本月以来超额收益:-1.33%[4][71] * 今年以来超额收益:5.24%[4][71]
高频选股因子周报(20251215-20251219):高频因子走势分化持续,多粒度因子表现反弹。AI 增强组合均一定程度反弹。-20251221
国泰海通证券· 2025-12-21 15:49
量化模型与因子总结 量化因子与构建方式 1. **因子名称**:日内高频偏度因子 **因子构建思路**:捕捉股票日内收益的分布特征,特别是偏度信息,以预测未来收益[14] **因子具体构建过程**:报告未提供详细构建公式,但指出计算方式可参考专题报告《选股因子系列研究(十九)——高频因子之股票收益分布特征》[14] 2. **因子名称**:日内下行波动占比因子 **因子构建思路**:分解已实现波动,关注下行波动部分在总波动中的占比,以衡量股票的下跌风险[19] **因子具体构建过程**:报告未提供详细构建公式,但指出计算方式可参考专题报告《选股因子系列研究(二十五)——高频因子之已实现波动分解》[19] 3. **因子名称**:开盘后买入意愿占比因子 **因子构建思路**:基于开盘后一段时间内的高频交易数据,通过直观逻辑或机器学习方法,将高频信息低频化,计算买入意愿的占比[23] **因子具体构建过程**:报告未提供详细构建公式,但指出计算方式可参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[23] 4. **因子名称**:开盘后买入意愿强度因子 **因子构建思路**:与买入意愿占比因子类似,但更侧重于衡量买入意愿的强度而非单纯占比[28] **因子具体构建过程**:报告未提供详细构建公式,但指出计算方式可参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[28] 5. **因子名称**:开盘后大单净买入占比因子 **因子构建思路**:分析开盘后大单资金的净买入行为,计算其占比以捕捉主力资金动向[33] 6. **因子名称**:开盘后大单净买入强度因子 **因子构建思路**:在净买入占比的基础上,进一步衡量大单净买入的强度[38] 7. **因子名称**:改进反转因子 **因子构建思路**:对传统反转因子进行改进,以更好地捕捉价格反转效应[43] 8. **因子名称**:尾盘成交占比因子 **因子构建思路**:关注尾盘时段成交量在全天成交量中的占比,以捕捉尾盘资金行为信息[49] 9. **因子名称**:平均单笔流出金额占比因子 **因子构建思路**:通过计算平均单笔流出金额的占比,来衡量资金流出的压力[55] 10. **因子名称**:大单推动涨幅因子 **因子构建思路**:衡量由大单交易推动的股价上涨幅度,以识别有资金强力推动的股票[60] 11. **因子名称**:改进 GRU(50,2)+NN(10) 因子 **因子构建思路**:使用门控循环单元(GRU)和神经网络(NN)相结合的深度学习模型,从高频数据中提取选股信号[64] **因子具体构建过程**:模型结构为GRU(50,2)与NN(10)的组合,具体网络架构和训练细节未在报告中详述[64] 12. **因子名称**:残差注意力 LSTM(48,2)+NN(10) 因子 **因子构建思路**:使用结合了残差连接和注意力机制的长短期记忆网络(LSTM)与神经网络相结合的深度学习模型,处理高频数据[66] **因子具体构建过程**:模型结构为残差注意力LSTM(48,2)与NN(10)的组合,具体网络架构和训练细节未在报告中详述[66] 13. **因子名称**:多颗粒度模型-5日标签因子 **因子构建思路**:使用基于双向AGRU(可能指注意力GRU)训练的多颗粒度深度学习模型,预测未来5日的收益标签[69] **因子具体构建过程**:模型基于双向AGRU训练得到,具体网络架构和训练细节未在报告中详述[69] 14. **因子名称**:多颗粒度模型-10日标签因子 **因子构建思路**:使用基于双向AGRU训练的多颗粒度深度学习模型,预测未来10日的收益标签[70] **因子具体构建过程**:模型基于双向AGRU训练得到,具体网络架构和训练细节未在报告中详述[70] 量化模型与构建方式 1. **模型名称**:周度调仓的中证500 AI增强宽约束组合 **模型构建思路**:基于深度学习因子(多颗粒度模型-10日标签)构建中证500指数增强组合,在较宽松的风险约束下最大化预期收益[74] **模型具体构建过程**:以最大化预期收益为目标函数 $$max\sum\mu_{i}w_{i}$$,其中 $w_i$ 为股票i的权重,$\mu_i$ 为股票i的预期超额收益[75]。组合优化时施加一系列风险控制约束,包括个股权重上限1%、行业偏离上限1%、市值因子暴露上限0.3等“宽”约束条件[75]。回测假设以次日均价成交,并扣除双边3‰的交易成本[76] 2. **模型名称**:周度调仓的中证500 AI增强严约束组合 **模型构建思路**:基于深度学习因子(多颗粒度模型-10日标签)构建中证500指数增强组合,在更严格的风险约束下最大化预期收益[74] **模型具体构建过程**:目标函数与宽约束组合相同 $$max\sum\mu_{i}w_{i}$$[75]。但施加更严格的风险约束,例如市值因子暴露上限收紧至0.1,并额外增加ROE、SUE、波动率等因子的暴露约束,以及更高的成份股权重约束(0.8)[75]。回测假设以次日均价成交,并扣除双边3‰的交易成本[76] 3. **模型名称**:周度调仓的中证1000 AI增强宽约束组合 **模型构建思路**:基于深度学习因子(多颗粒度模型-10日标签)构建中证1000指数增强组合,在较宽松的风险约束下最大化预期收益[74] **模型具体构建过程**:目标函数与前述组合相同 $$max\sum\mu_{i}w_{i}$$[75]。对中证1000指数成分股进行优化,约束条件与中证500宽约束组合类似,包括个股权重上限1%、行业偏离上限1%、市值因子暴露上限0.3等[75]。回测假设以次日均价成交,并扣除双边3‰的交易成本[76] 4. **模型名称**:周度调仓的中证1000 AI增强严约束组合 **模型构建思路**:基于深度学习因子(多颗粒度模型-10日标签)构建中证1000指数增强组合,在更严格的风险约束下最大化预期收益[74] **模型具体构建过程**:目标函数与前述组合相同 $$max\sum\mu_{i}w_{i}$$[75]。对中证1000指数成分股进行优化,约束条件与中证500严约束组合类似,包括更严格的市值暴露约束(0.1)以及额外的ROE、SUE、波动率等因子暴露约束和成份股权重约束(0.8)[75]。回测假设以次日均价成交,并扣除双边3‰的交易成本[76] 因子的回测效果 (以下数据均为周度频率测试结果,涵盖“上周”、“12月”及“2025YTD”三个时间段)[10][13] 1. 日内高频偏度因子,IC(历史)0.019,IC(2025年)0.021,e^(-rank mae)(历史)0.324,e^(-rank mae)(2025年)0.326,多空收益上周0.67%,多空收益12月-1.18%,多空收益2025YTD 22.39%,2025年周胜率32/51,多头超额收益上周-0.09%,多头超额收益12月-1.49%,多头超额收益2025YTD 5.11%,多头超额收益2025年周胜率26/51[10] 2. 日内下行波动占比因子,IC(历史)0.016,IC(2025年)0.018,e^(-rank mae)(历史)0.323,e^(-rank mae)(2025年)0.324,多空收益上周0.87%,多空收益12月-1.33%,多空收益2025YTD 19.08%,2025年周胜率34/51,多头超额收益上周-0.01%,多头超额收益12月-1.70%,多头超额收益2025YTD 1.89%,多头超额收益2025年周胜率27/51[10] 3. 开盘后买入意愿占比因子,IC(历史)0.025,IC(2025年)0.023,e^(-rank mae)(历史)0.321,e^(-rank mae)(2025年)0.320,多空收益上周0.66%,多空收益12月0.61%,多空收益2025YTD 21.12%,2025年周胜率38/51,多头超额收益上周0.59%,多头超额收益12月0.37%,多头超额收益2025YTD 9.83%,多头超额收益2025年周胜率33/51[10] 4. 开盘后买入意愿强度因子,IC(历史)0.030,IC(2025年)0.027,e^(-rank mae)(历史)0.326,e^(-rank mae)(2025年)0.326,多空收益上周0.46%,多空收益12月0.94%,多空收益2025YTD 28.09%,2025年周胜率38/51,多头超额收益上周-0.49%,多头超额收益12月0.10%,多头超额收益2025YTD 10.73%,多头超额收益2025年周胜率35/51[10] 5. 开盘后大单净买入占比因子,IC(历史)0.035,IC(2025年)0.020,e^(-rank mae)(历史)0.322,e^(-rank mae)(2025年)0.317,多空收益上周-0.21%,多空收益12月0.17%,多空收益2025YTD 22.11%,2025年周胜率35/51,多头超额收益上周-0.07%,多头超额收益12月0.75%,多头超额收益2025YTD 11.27%,多头超额收益2025年周胜率32/51[10] 6. 开盘后大单净买入强度因子,IC(历史)0.024,IC(2025年)0.014,e^(-rank mae)(历史)0.320,e^(-rank mae)(2025年)0.316,多空收益上周-0.25%,多空收益12月0.38%,多空收益2025YTD 12.50%,2025年周胜率30/51,多头超额收益上周-0.06%,多头超额收益12月0.77%,多头超额收益2025YTD 9.40%,多头超额收益2025年周胜率34/51[10] 7. 改进反转因子,IC(历史)0.030,IC(2025年)0.020,e^(-rank mae)(历史)0.330,e^(-rank mae)(2025年)0.330,多空收益上周0.35%,多空收益12月0.91%,多空收益2025YTD 22.33%,2025年周胜率38/51,多头超额收益上周-0.54%,多头超额收益12月-0.07%,多头超额收益2025YTD 7.82%,多头超额收益2025年周胜率28/51[11] 8. 尾盘成交占比因子,IC(历史)0.025,IC(2025年)0.015,e^(-rank mae)(历史)0.322,e^(-rank mae)(2025年)0.319,多空收益上周-0.94%,多空收益12月1.04%,多空收益2025YTD 16.73%,2025年周胜率33/51,多头超额收益上周-0.73%,多头超额收益12月-0.08%,多头超额收益2025YTD 5.19%,多头超额收益2025年周胜率27/51[11] 9. 平均单笔流出金额占比因子,IC(历史)0.008,IC(2025年)-0.007,e^(-rank mae)(历史)0.317,e^(-rank mae)(2025年)0.315,多空收益上周-1.15%,多空收益12月-2.15%,多空收益2025YTD -8.11%,2025年周胜率23/51,多头超额收益上周-0.30%,多头超额收益12月-0.81%,多头超额收益2025YTD -3.10%,多头超额收益2025年周胜率18/51[13] 10. 大单推动涨幅因子,IC(历史)0.018,IC(2025年)0.007,e^(-rank mae)(历史)0.325,e^(-rank mae)(2025年)0.325,多空收益上周0.41%,多空收益12月-0.93%,多空收益2025YTD 7.19%,2025年周胜率31/51,多头超额收益上周0.14%,多头超额收益12月-0.15%,多头超额收益2025YTD 1.61%,多头超额收益2025年周胜率28/51[13] 11. 改进 GRU(50,2)+NN(10) 因子,IC(历史)0.066,IC(2025年)0.045,e^(-rank mae)(历史)0.336,e^(-rank mae)(2025年)0.332,多空收益上周1.13%,多空收益12月-0.47%,多空收益2025YTD 47.04%,2025年周胜率41/51,多头超额收益上周-0.20%,多头超额收益12月-0.26%,多头超额收益2025YTD 7.10%,多头超额收益2025年周胜率28/51[13] 12. 残差注意力 LSTM(48,2)+NN(10) 因子,IC(历史)0.063,IC(2025年)0.044,e^(-rank mae)(历史)0.334,e^(-rank mae)(2025年)0.331,多空收益上周1.66%,多空收益12月0.19%,多空收益2025YTD 47.39%,2025年周胜率46/51,多头超额收益上周0.15%,多头超额收益12月0.06%,多头超额收益2025YTD 8.92%,多头超额收益2025年周胜率30/51[13] 13. 多颗粒度模型-5日标签因子,IC(历史)0.080,IC(2025年)0.065,e^(-rank mae)(历史)0.343,e^(-rank mae)(2025年)0.340,多空收益上周2.46%,多空收益12月1.12%,多空收益2025YTD 68.13%,2025年周胜率45/51,多头超额收益上周0.74%,多头超额收益12月-0.18%,多头超额收益2025YTD 24.48%,多头超额收益2025年周胜率40/51[13] 14. 多颗粒度模型-10日标签因子,IC(历史)0.073,IC(2025年)0.060,e^(-rank mae)(历史)0.342,e^(-rank mae)(2025年)0.341,多空收益上周2.26%,多空收益12月1.11%,多空收益2025YTD 62.71%,2025年周胜率45/51,多头超额收益上周0.76%,多头超额收益12月-0.50%,多头超额收益2025YTD 24.30%,多头超额收益2025年周胜率38/51[13] 模型的回测效果 (以下数据均为周度调仓频率下的超额收益及胜率)[14] 1. 周度调仓的中证500 AI增强宽约束组合,超额收益上周0.41%,超额收益12月-2.64%,超额收益2025YTD 5.46%,2025年周胜率29/51[14] 2. 周度调仓的中证500 AI增强严约束组合,超额收益上周0.92%,超额收益12月-1.62%,超额收益2025YTD 9.23%,2025年周胜率33/51[14] 3. 周度调仓的中证1000 AI增强宽约束组合,超额收益上周1.55%,超额收益12月-2.69%,超额收益2025YTD 15.39%,2025年周胜率34/51[14] 4. 周度调仓的中证1000 AI增强严约束组合,超额收益上周1.48%,超额收益12月-1.45%,超额收益2025YTD 19.02%,2025年周胜率33/51[14]
高频因子跟踪:上周价量背离因子表现优异
国金证券· 2025-12-10 22:00
量化模型与因子总结 量化因子与构建方式 1. 价格区间因子 * **因子名称**:价格区间因子 * **构建思路**:衡量股票在日内不同价格区间成交的活跃程度,以体现投资者对未来走势的预期[3]。具体而言,高价格区间成交越不活跃,或低价格区间大资金越活跃,股票未来上涨可能性越大[12]。 * **具体构建过程**: 1. 使用高频三秒快照数据[12]。 2. 构建三个细分因子: * **高价格80%区间成交量因子 (VH80TAW)**:衡量股票在日内高价格80%区间的成交量活跃度,与未来收益呈负相关[12]。 * **高价格80%区间成交笔数因子 (MIH80TAW)**:衡量股票在日内高价格80%区间的成交笔数活跃度,与未来收益呈负相关[12]。 * **低价格10%区间每笔成交量因子 (VPML10TAW)**:衡量股票在日内低价格10%区间的平均每笔成交量,与未来收益呈正相关[12]。 3. 以25%、25%和50%的权重对上述三个细分因子进行合成[14]。 4. 对合成后的因子进行行业和市值中性化处理[14]。 * **因子评价**:该因子展现出了较强的预测效果,在样本外表现出色,超额净值曲线稳定向上,今年以来表现比较稳定[3][16]。 2. 量价背离因子 * **因子名称**:量价背离因子 * **构建思路**:衡量股票价格与成交量的相关性,当量价出现背离时(相关性低),无论股价处于上升或下降通道,未来上涨的可能性均较高[20]。 * **具体构建过程**: 1. 利用高频快照数据[20]。 2. 分别计算快照成交价与快照成交量、成交笔数、每笔成交量的相关性[20]。 3. 选取在周频调仓下表现较好的两个细分因子: * **价格与成交笔数的相关性因子 (CorrPM)**[20] * **价格与成交量的相关性因子 (CorrPV)**[20] 4. 对上述两个细分因子进行等权合成[20]。 5. 对合成后的因子进行行业和市值中性化处理[20]。 * **因子评价**:该因子近几年表现不太稳定,多空净值曲线趋近走平,但去年超额收益处于历史较高水平,今年以来表现良好[3][22]。 3. 遗憾规避因子 * **因子名称**:遗憾规避因子 * **构建思路**:基于行为金融学的遗憾规避理论,考察投资者卖出股票后股价反弹的比例和程度。卖出后反弹占比越高或反弹程度越大,表明投资者遗憾情绪越强,股票未来预期收益更低[23]。 * **具体构建过程**: 1. 利用逐笔成交数据区分每笔交易的主动买卖方向[23]。 2. 在加入小单和尾盘交易限制后,因子表现有进一步提升[23]。 3. 选取在周频调仓下表现较好的两个细分因子: * **卖出反弹占比因子 (LCVOLESW)**[23] * **卖出反弹偏离因子 (LCPESW)**[23] 4. 对上述两个细分因子进行等权合成[28]。 5. 对合成后的因子进行行业和市值中性化处理[28]。 * **因子评价**:该因子展现了较好的预测效果,样本外超额收益稳定,表明A股投资者的遗憾规避情绪会显著影响股价预期收益[3][31]。 4. 斜率凸性因子 * **因子名称**:斜率凸性因子 * **构建思路**:从投资者耐心与供求关系弹性的角度出发,利用限价订单簿数据计算买卖双方的订单簿斜率。买方斜率越大(需求弹性小)或卖方斜率越小(供给弹性大),表明投资者对价格不敏感或不愿轻易降价,对应股票更高的预期收益[32]。 * **具体构建过程**: 1. 使用高频快照数据中的限价订单簿信息[32]。 2. 将委托量数据按照档位累加,用委托价和累计委托量计算买卖双方的订单簿斜率[32]。 3. 区分高档位和低档位投资者斜率因子,并根据两者的反向关系构建斜率凸性因子[32]。 4. 提取两个细分因子进行合成: * **低档斜率因子 (Slope_abl)**[32] * **高档位卖方凸性因子 (Slope_alh)**[32] 5. 对上述两个细分因子进行等权合成[35]。 6. 对合成后的因子进行行业和市值中性化处理[35]。 * **因子评价**:该因子自2016年以来收益保持平稳趋势,但在样本外整体表现比较平淡[35]。 5. 高频“金”组合合成因子 * **因子/模型名称**:高频“金”组合合成因子(用于构建中证1000指数增强策略) * **构建思路**:将多个有效的单一高频因子合成,以构建综合性的选股模型[3]。 * **具体构建过程**:将上述**价格区间因子**、**量价背离因子**、**遗憾规避因子**三类高频因子进行等权合成[3]。 6. 高频&基本面共振组合合成因子 * **因子/模型名称**:高频&基本面共振组合合成因子(用于构建中证1000指数增强策略) * **构建思路**:结合相关性较低的高频因子与基本面因子,以提升多因子投资组合的表现[44]。 * **具体构建过程**:将高频“金”组合合成因子(包含上述三类高频因子)与三个比较有效的基本面因子(一致预期、成长、技术因子)进行等权合成[44]。 量化模型的回测效果 1. 高频“金”组合中证1000指数增强策略 * **模型名称**:高频“金”组合中证1000指数增强策略 * **构建思路**:基于合成的高频“金”组合因子构建指数增强策略[39]。 * **具体构建过程**: 1. 使用高频“金”组合合成因子进行选股。 2. 策略调仓频率为周度,基准为中证1000指数[39]。 3. 手续费率为单边千分之二[39]。 4. 加入换手率缓冲机制以降低调仓成本[39]。 * **模型评价**:该策略在样本外表现出色,有着较强的超额收益水平[43]。 * **测试结果**: * 年化收益率:9.49%[40] * 年化波动率:23.87%[40] * Sharpe比率:0.40[40] * 最大回撤率:47.77%[40] * 双边换手率(周度):14.66%[40] * 年化超额收益率:10.11%[40] * 跟踪误差:4.29%[40] * 信息比率(IR):2.36[40] * 超额最大回撤:6.04%[40] * 上周超额收益:0.13%[3][43] * 本月以来超额收益:0.13%[3][43] * 今年以来超额收益:7.16%[3][43] 2. 高频&基本面共振组合中证1000指数增强策略 * **模型名称**:高频&基本面共振组合中证1000指数增强策略 * **构建思路**:基于合成的高频&基本面共振组合因子构建指数增强策略[44]。 * **具体构建过程**: 1. 使用高频&基本面共振组合合成因子进行选股。 2. 策略基准为中证1000指数[44]。 * **模型评价**:加入基本面因子后的指数增强策略各项业绩指标均有一定程度提升,在样本外表现稳定,有着较强的超额收益水平[44][48]。 * **测试结果**: * 年化收益率:13.66%[47] * 年化波动率:23.49%[47] * Sharpe比率:0.58[47] * 最大回撤率:39.60%[47] * 双边换手率(周度):22.54%[47] * 年化超额收益率:14.21%[47] * 跟踪误差:4.19%[47] * 信息比率(IR):3.39[47] * 超额最大回撤:4.52%[47] * 上周超额收益:0.35%[4][48] * 本月以来超额收益:0.35%[4][48] * 今年以来超额收益:7.03%[4][48] 量化因子的回测效果 (注:以下因子表现均为在中证1000指数成分股内,经过行业市值中性化处理后的结果[11]) 1. 价格区间因子 * **多空收益率**: * 上周:-0.88%[13] * 本月以来:-0.88%[13] * 今年以来:12.91%[13] * **多头超额收益率**: * 上周:-0.51%[2][13] * 本月以来:-0.51%[2][13] * 今年以来:4.98%[2][13] 2. 量价背离因子 * **多空收益率**: * 上周:1.73%[11][13] * 本月以来:1.73%[13] * 今年以来:16.24%[13] * **多头超额收益率**: * 上周:0.37%[2][13] * 本月以来:0.37%[2][13] * 今年以来:4.93%[2][13] 3. 遗憾规避因子 * **多空收益率**: * 上周:-0.13%[11][13] * 本月以来:-0.13%[13] * 今年以来:14.72%[13] * **多头超额收益率**: * 上周:0.03%[2][13] * 本月以来:0.03%[2][13] * 今年以来:-1.00%[2][13] 4. 斜率凸性因子 * **多头超额收益率**: * 上周:-0.35%[2] * 本月以来:-0.35%[2] * 今年以来:-6.11%[2] 5. 价格区间细分因子 * **高价格80%区间成交量因子 (VH80TAW)**: * 多空收益率(今年以来):17.55%[12] * 多头超额收益率(上周):-0.52%[12] * 多头超额收益率(本月以来):-0.52%[12] * 多头超额收益率(今年以来):5.64%[12] * **高价格80%区间成交笔数因子 (MIH80TAW)**: * 多空收益率(今年以来):20.58%[12] * 多头超额收益率(上周):-0.39%[12] * 多头超额收益率(本月以来):-0.39%[12] * 多头超额收益率(今年以来):7.15%[12] * **低价格10%区间每笔成交量因子 (VPML10TAW)**: * 多空收益率(今年以来):2.81%[12] * 多头超额收益率(上周):0.08%[12] * 多头超额收益率(本月以来):0.08%[12] * 多头超额收益率(今年以来):0.36%[12] 6. 量价背离细分因子 * **价格与成交笔数相关性因子 (CorrPM)**: * 多空收益率(上周):2.60%[20] * 多空收益率(本月以来):2.60%[20] * 多空收益率(今年以来):28.03%[20] * 多头超额收益率(上周):0.50%[20] * 多头超额收益率(本月以来):0.50%[20] * 多头超额收益率(今年以来):8.80%[20] * **价格与成交量相关性因子 (CorrPV)**: * 多空收益率(上周):2.92%[20] * 多空收益率(本月以来):2.92%[20] * 多空收益率(今年以来):24.47%[20] * 多头超额收益率(上周):0.52%[20] * 多头超额收益率(本月以来):0.52%[20] * 多头超额收益率(今年以来):10.71%[20] 7. 遗憾规避细分因子 * **卖出反弹占比因子 (LCVOLESW)**: * 多空收益率(上周):0.10%[23] * 多空收益率(本月以来):0.10%[23] * 多空收益率(今年以来):-1.16%[23] * 多头超额收益率(上周):-0.08%[26] * 多头超额收益率(本月以来):-0.08%[26] * 多头超额收益率(今年以来):-4.73%[26] * **卖出反弹偏离因子 (LCPESW)**: * 多空收益率(上周):1.10%[23] * 多空收益率(本月以来):1.10%[23] * 多空收益率(今年以来):21.87%[23] * 多头超额收益率(上周):0.17%[26] * 多头超额收益率(本月以来):0.17%[26] * 多头超额收益率(今年以来):-1.88%[26] 8. 斜率凸性细分因子 * **低档斜率因子 (Slope_abl)**: * 多空收益率(上周):-0.92%[34] * 多空收益率(本月以来):-0.92%[34] * 多空收益率(今年以来):-5.51%[34] * 多头超额收益率(上周):-0.51%[34] * 多头超额收益率(本月以来):-0.51%[34] * 多头超额收益率(今年以来):-9.82%[34] * **高档位卖方凸性因子 (Slope_alh)**: * 多空收益率(上周):0.25%[34] * 多空收益率(本月以来):0.25%[34] * 多空收益率(今年以来):-13.42%[34] * 多头超额收益率(上周):0.64%[34] * 多头超额收益率(本月以来):0.64%[34] * 多头超额收益率(今年以来):-4.05%[34]
高频选股因子周报-20251201
国泰海通证券· 2025-12-01 20:15
核心观点 - 上周(20251124-20251128)高频选股因子普遍反弹,多粒度因子多头表现明显改善,AI增强组合表现平稳且多数获得正收益 [1][2][5] 高频因子表现汇总 - 日内高频偏度因子上周、11月、2025年多空收益分别为1.93%、1.29%、23.56% [5] - 日内下行波动占比因子上周、11月、2025年多空收益分别为1.63%、1.44%、20.42% [5] - 开盘后买入意愿占比因子上周、11月、2025年多空收益分别为1.21%、1.17%、20.51% [5] - 开盘后买入意愿强度因子上周、11月、2025年多空收益分别为1.17%、1.36%、27.15% [5] - 开盘后大单净买入占比因子上周、11月、2025年多空收益分别为1.35%、1.00%、21.94% [5] - 开盘后大单净买入强度因子上周、11月、2025年多空收益分别为0.97%、-0.49%、12.12% [5] - 改进反转因子上周、11月、2025年多空收益分别为0.01%、-0.60%、21.42% [5] - 尾盘成交占比因子上周、11月、2025年多空收益分别为1.64%、-0.07%、15.70% [5] - 平均单笔流出金额占比因子上周、11月、2025年多空收益分别为0.02%、-2.91%、-5.96% [5] - 大单推动涨幅因子上周、11月、2025年多空收益分别为-0.34%、-0.49%、8.12% [5] 多粒度与深度学习因子表现 - GRU(10,2)+NN(10)因子上周、11月、2025年多空收益分别为1.98%、1.97%、47.50%,多头超额收益分别为0.73%、-0.87%、7.36% [5] - GRU(50,2)+NN(10)因子上周、11月、2025年多空收益分别为2.14%、1.42%、47.20%,多头超额收益分别为1.37%、0.04%、8.85% [5] - 多颗粒度模型(5日标签)因子上周、11月、2025年多空收益分别为2.98%、6.42%、67.01%,多头超额收益分别为1.44%、2.57%、24.66% [5] - 多颗粒度模型(10日标签)因子上周、11月、2025年多空收益分别为3.27%、6.45%、61.60%,多头超额收益分别为1.82%、2.93%、24.80% [5] AI指数增强组合表现 - 周度调仓中证500 AI增强宽约束组合上周、11月、2025年超额收益率分别为-0.08%、4.36%、8.33% [5] - 周度调仓中证500 AI增强严约束组合上周、11月、2025年超额收益率分别为0.19%、2.75%、11.02% [5] - 周度调仓中证1000 AI增强宽约束组合上周、11月、2025年超额收益率分别为0.11%、4.58%、18.58% [5] - 周度调仓中证1000 AI增强严约束组合上周、11月、2025年超额收益率分别为0.11%、1.93%、20.77% [5] 因子分组收益特征 - 高频偏度因子在2025年度和11月均呈现明显的多头收益特征,上周表现强劲 [13][14][16][17] - 下行波动占比因子在2025年度和11月分组收益表现稳定,上周继续改善 [19][20][21][22] - 开盘后买入意愿相关因子(占比与强度)在2025年多空收益均超过20%,上周表现积极 [23][24][25][26][28][29][30][31] - 开盘后大单净买入相关因子在2025年多空收益表现突出,占比因子达21.94% [33][34][35][36][38][39][40][41] - 改进反转因子2025年多空收益达21.42%,但11月表现较弱为-0.60% [43][44][45][46] - 尾盘成交占比因子2025年多空收益为15.70%,上周表现较好为1.64% [48][49][50][51] - 多颗粒度模型因子表现最为突出,5日标签和10日标签2025年多空收益分别达67.01%和61.60% [64][65][66][67][68]
高频选股因子周报(20251110- 20251114):高频因子走势分化,多粒度因子持续战胜市场。AI 增强组合继续表现亮眼,多数组合创年内新高。-20251116
国泰海通证券· 2025-11-16 19:40
根据研报内容,以下是关于量化因子和模型的总结。 量化因子与构建方式 1. **因子名称:日内高频偏度因子** 因子构建思路:通过分析股票日内收益的分布特征,捕捉其偏度信息以预测未来表现[12] 因子具体构建过程:具体计算方式请参考专题报告《选股因子系列研究(十九)——高频因子之股票收益分布特征》[12] 2. **因子名称:日内下行波动占比因子** 因子构建思路:将已实现波动率分解,计算下行波动部分在总波动中的占比[17] 因子具体构建过程:具体计算方式请参考专题报告《选股因子系列研究(二十五)——高频因子之已实现波动分解》[17] 3. **因子名称:开盘后买入意愿占比因子** 因子构建思路:基于开盘后一段时间内的高频交易数据,衡量买入意愿的相对强度[22] 因子具体构建过程:具体计算方式请参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[22] 4. **因子名称:开盘后买入意愿强度因子** 因子构建思路:在买入意愿占比的基础上,进一步衡量买入意愿的绝对强度[25] 因子具体构建过程:具体计算方式请参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[25] 5. **因子名称:开盘后大单净买入占比因子** 因子构建思路:分析开盘后大单净买入金额在总成交额中的占比,捕捉大资金动向[30] 6. **因子名称:开盘后大单净买入强度因子** 因子构建思路:衡量开盘后大单净买入的绝对强度[34] 7. **因子名称:改进反转因子** 因子构建思路:对传统反转因子进行改进,以更好地捕捉价格反转效应[40] 8. **因子名称:尾盘成交占比因子** 因子构建思路:通过分析尾盘成交额在日总成交额中的占比,捕捉资金在尾盘的动向[44] 9. **因子名称:平均单笔流出金额占比因子** 因子构建思路:计算平均单笔流出金额在总流出金额中的占比,分析资金流出特征[49] 10. **因子名称:大单推动涨幅因子** 因子构建思路:衡量由大单交易推动的股价上涨幅度[54] 11. **因子名称:改进 GRU(50,2)+NN(10)因子** 因子构建思路:使用改进的门控循环单元(GRU)神经网络结合全连接网络(NN)从高频数据中提取预测信号[58] 12. **因子名称:残差注意力 LSTM(48,2)+NN(10)因子** 因子构建思路:使用结合了残差连接和注意力机制的长短期记忆网络(LSTM)结合全连接网络(NN)进行深度学习因子构建[59] 13. **因子名称:多颗粒度模型-5日标签因子** 因子构建思路:基于双向A-GRU网络,使用5日收益作为预测标签进行训练,从多时间颗粒度数据中学习[64] 14. **因子名称:多颗粒度模型-10日标签因子** 因子构建思路:基于双向A-GRU网络,使用10日收益作为预测标签进行训练[65] 因子的回测效果 1. **日内高频偏度因子**,历史IC 0.019[9],2025年IC 0.023[9],历史 e^(-rank mae) 0.324[9],2025年 e^(-rank mae) 0.327[9],上周多空收益 -0.26%[9],11月多空收益 0.49%[9],2025YTD多空收益 22.76%[9],2025年周胜率 30/46[9],上周多头超额收益 0.42%[9],11月多头超额收益 1.46%[9],2025YTD多头超额收益 6.14%[9],2025年多头周胜率 25/46[9] 2. **日内下行波动占比因子**,历史IC 0.016[9],2025年IC 0.020[9],历史 e^(-rank mae) 0.323[9],2025年 e^(-rank mae) 0.325[9],上周多空收益 0.38%[9],11月多空收益 1.35%[9],2025YTD多空收益 20.32%[9],2025年周胜率 32/46[9],上周多头超额收益 0.41%[9],11月多头超额收益 1.08%[9],2025YTD多头超额收益 3.54%[9],2025年多头周胜率 26/46[9] 3. **开盘后买入意愿占比因子**,历史IC 0.025[9],2025年IC 0.024[9],历史 e^(-rank mae) 0.321[9],2025年 e^(-rank mae) 0.321[9],上周多空收益 0.28%[9],11月多空收益 -0.01%[9],2025YTD多空收益 19.33%[9],2025年周胜率 36/46[9],上周多头超额收益 0.47%[9],11月多头超额收益 0.28%[9],2025YTD多头超额收益 8.78%[9],2025年多头周胜率 29/46[9] 4. **开盘后买入意愿强度因子**,历史IC 0.030[9],2025年IC 0.027[9],历史 e^(-rank mae) 0.326[9],2025年 e^(-rank mae) 0.326[9],上周多空收益 0.27%[9],11月多空收益 0.57%[9],2025YTD多空收益 26.36%[9],2025年周胜率 35/46[9],上周多头超额收益 -0.22%[9],11月多头超额收益 -0.55%[9],2025YTD多头超额收益 10.06%[9],2025年多头周胜率 33/46[9] 5. **开盘后大单净买入占比因子**,历史IC 0.035[9],2025年IC 0.020[9],历史 e^(-rank mae) 0.322[9],2025年 e^(-rank mae) 0.317[9],上周多空收益 -0.20%[9],11月多空收益 -0.44%[9],2025YTD多空收益 20.50%[9],2025年周胜率 32/46[9],上周多头超额收益 -0.21%[9],11月多头超额收益 -0.63%[9],2025YTD多头超额收益 9.22%[9],2025年多头周胜率 29/46[9] 6. **开盘后大单净买入强度因子**,历史IC 0.024[9],2025年IC 0.014[9],历史 e^(-rank mae) 0.320[9],2025年 e^(-rank mae) 0.316[9],上周多空收益 -0.88%[9],11月多空收益 -1.89%[9],2025YTD多空收益 10.71%[9],2025年周胜率 27/46[9],上周多头超额收益 -0.66%[9],11月多头超额收益 -1.23%[9],2025YTD多头超额收益 7.50%[9],2025年多头周胜率 31/46[9] 7. **改进反转因子**,历史IC 0.031[9],2025年IC 0.022[9],历史 e^(-rank mae) 0.330[9],2025年 e^(-rank mae) 0.330[9],上周多空收益 0.27%[9],11月多空收益 -0.09%[9],2025YTD多空收益 21.93%[9],2025年周胜率 35/46[9],上周多头超额收益 -0.43%[9],11月多头超额收益 -0.68%[9],2025YTD多头超额收益 7.79%[9],2025年多头周胜率 26/46[9] 8. **尾盘成交占比因子**,历史IC 0.026[9],2025年IC 0.016[9],历史 e^(-rank mae) 0.322[9],2025年 e^(-rank mae) 0.319[9],上周多空收益 0.81%[9],11月多空收益 0.25%[9],2025YTD多空收益 16.02%[9],2025年周胜率 30/46[9],上周多头超额收益 0.77%[9],11月多头超额收益 0.31%[9],2025YTD多头超额收益 5.33%[9],2025年多头周胜率 25/46[9] 9. **平均单笔流出金额占比因子**,历史IC 0.008[11],2025年IC -0.005[11],历史 e^(-rank mae) 0.317[11],2025年 e^(-rank mae) 0.315[11],上周多空收益 -1.33%[11],11月多空收益 -2.74%[11],2025YTD多空收益 -5.80%[11],2025年周胜率 21/46[11],上周多头超额收益 -0.07%[11],11月多头超额收益 -0.48%[11],2025YTD多头超额收益 -1.93%[11],2025年多头周胜率 18/46[11] 10. **大单推动涨幅因子**,历史IC 0.018[11],2025年IC 0.010[11],历史 e^(-rank mae) 0.325[11],2025年 e^(-rank mae) 0.326[11],上周多空收益 0.36%[11],11月多空收益 0.71%[11],2025YTD多空收益 9.32%[11],2025年周胜率 30/46[11],上周多头超额收益 -0.17%[11],11月多头超额收益 -0.43%[11],2025YTD多头超额收益 2.17%[11],2025年多头周胜率 25/46[11] 11. **改进 GRU(50,2)+NN(10)因子**,历史IC 0.066[11],2025年IC 0.047[11],历史 e^(-rank mae) 0.336[11],2025年 e^(-rank mae) 0.333[11],上周多空收益 -1.32%[11],11月多空收益 -0.71%[11],2025YTD多空收益 44.83%[11],2025年周胜率 38/46[11],上周多头超额收益 -0.77%[11],11月多头超额收益 -1.01%[11],2025YTD多头超额收益 7.21%[11],2025年多头周胜率 26/46[11] 12. **残差注意力 LSTM(48,2)+NN(10)因子**,历史IC 0.063[11],2025年IC 0.046[11],历史 e^(-rank mae) 0.334[11],2025年 e^(-rank mae) 0.331[11],上周多空收益 -1.50%[11],11月多空收益 -1.23%[11],2025YTD多空收益 44.56%[11],2025年周胜率 42/46[11],上周多头超额收益 -0.83%[11],11月多头超额收益 -0.92%[11],2025YTD多头超额收益 7.90%[11],2025年多头周胜率 27/46[11] 13. **多颗粒度模型-5日标签因子**,历史IC 0.080[11],2025年IC 0.068[11],历史 e^(-rank mae) 0.344[11],2025年 e^(-rank mae) 0.341[11],上周多空收益 0.75%[11],11月多空收益 2.56%[11],2025YTD多空收益 63.15%[11],2025年周胜率 42/46[11],上周多头超额收益 1.07%[11],11月多头超额收益 2.36%[11],2025YTD多头超额收益 24.44%[11],2025年多头周胜率 38/46[11] 14. **多颗粒度模型-10日标签因子**,历史IC 0.074[11],2025年IC 0.062[11],历史 e^(-rank mae) 0.342[11],2025年 e^(-rank mae) 0.342[11],上周多空收益 0.91%[11],11月多空收益 2.55%[11],2025YTD多空收益 57.70%[11],2025年周胜率 41/46[11],上周多头超额收益 0.98%[11],11月多头超额收益 2.27%[11],2025YTD多头超额收益 24.14%[11],2025年多头周胜率 36/46[11] 量化模型与构建方式 1. **模型名称:中证500 AI增强宽约束组合** 模型构建思路:基于深度学习因子(多颗粒度模型-10日标签)构建中证500指数增强组合,采用较宽的约束条件控制风险[69] 模型具体构建过程:组合优化目标为最大化预期收益,目标函数为 $$max\sum\mu_{i}w_{i}$$,其中 $$w_i$$ 为股票i的权重,$$\mu_i$$ 为股票i的预期超额收益[70] 风险控制约束包括:个股权重偏离1%,行业偏离1%,市值因子暴露0.3,市净率(PB)因子暴露0.3,市值三次方因子暴露0.3,换手率约束0.3[70] 测试中假定以次日均价成交,并扣除双边3‰的交易成本[71] 2. **模型名称:中证500 AI增强严约束组合** 模型构建思路:基于深度学习因子(多颗粒度模型-10日标签)构建中证500指数增强组合,采用更严格的约束条件控制风险[69] 模型具体构建过程:组合优化目标为最大化预期收益,目标函数为 $$max\sum\mu_{i}w_{i}$$[70] 风险控制约束包括:个股权重偏离1%,行业偏离1%,市值因子暴露0.1,市净率(PB)因子暴露0.3,市值二次方因子暴露0.1,ROE因子暴露0.3,SUE因子暴露0.3,波动率因子暴露0.3,成份股权重约束0.8,换手率约束0.3[70] 测试中假定以次日均价成交,并扣除双边3‰的交易成本[71] 3. **模型名称:中证1000 AI增强宽约束组合** 模型构建思路:基于深度学习因子(多颗粒度模型-10日标签)构建中证1000指数增强组合,采用较宽的约束条件控制风险[69] 模型具体构建过程:组合优化目标为最大化预期收益,目标函数为 $$max\sum\mu_{i}w_{i}$$[70] 风险控制约束包括:个股权重偏离1%,行业偏离1%,市值因子暴露0.3,市净率(PB)因子暴露0.3,市值三次方因子暴露0.3,换手率约束0.3[70] 测试中假定以次日均价成交,并扣除双边3‰的交易成本[71] 4. **模型名称:中证1000 AI增强严约束组合** 模型构建思路:基于深度学习因子(多颗粒度模型-10日标签)构建中证1000指数增强组合,采用更严格的约束条件控制风险[69] 模型具体构建过程:组合优化目标为最大化预期收益,目标函数为 $$max\sum\mu_{i}w_{i}$$[70] 风险控制约束包括:个股权重偏离1%,行业偏离1%,市值因子暴露0.1,市净率(PB)因子暴露0.3,市值二次方因子暴露0.1,ROE因子暴露0.3,SUE因子暴露0.3,波动率因子暴露0.3,成份股权重约束0.8,换手率约束0.3[70] 测试中假定以次日均价成交,并扣除双边3‰的交易成本[71] 模型的回测效果 1. **中证500 AI增强宽约束组合**,上周超额收益 2.02%[12],11月超额收益 3.38%[12],2025YTD超额收益 7.31%[12],2025年周胜率 27/46[12] 2. **中证500 AI增强严约束组合**,上周超额收益 0.73%[12],11月超额收益 2.35%[12],2025YTD超额收益 10.58%[12],2025年周胜率 30/46[12] 3. **中证1000 AI增强宽约束组合**,上周超额收益 2.41%[12],11月超额收益 4.46%[12],2025YTD超额收益 18.45%[12],2025年周胜率 31/46[12] 4. **中证1000 AI增强严约束组合**,上周超额收益 1.00%[12],11月超额收益 1.83%[12],2025YTD超额收益 20.66%[12],
高频因子跟踪:上周斜率凸性因子表现优异
国金证券· 2025-11-13 16:38
根据提供的研报内容,以下是关于量化因子和模型的总结。 量化因子与构建方式 1. **因子名称:价格区间因子**[11][12] * **因子构建思路**:该因子衡量股票在日内不同价格区间成交的活跃程度,能体现投资者对股票未来走势的预期[11]。具体地,股票在日内高价格区间投资行为聚集程度与成交活跃度越低,未来上涨可能性越大;低价格区间的平均每笔成交量越大,大资金活跃程度越高,股票未来上涨可能性越大[11]。 * **因子具体构建过程**:该因子是三个细分因子的合成因子。首先构建三个细分因子: * **高价格80%区间成交量因子 (VH80TAW)**:衡量在日内最高价80%及以上价格区间成交的活跃度。 * **高价格80%区间成交笔数因子 (MIH80TAW)**:衡量在日内最高价80%及以上价格区间成交的频繁程度。 * **低价格10%区间每笔成交量因子 (VPML10TAW)**:衡量在日内最低价10%及以下价格区间平均每笔成交的规模。 然后,以25%、25%和50%的权重对VH80TAW、MIH80TAW和VPML10TAW三个因子进行合成[14]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的价格区间因子。 * **因子评价**:该因子展现出了较强的预测效果,在样本外表现出色,超额净值曲线稳定向上,今年以来表现比较稳定[11][17]。 2. **因子名称:量价背离因子**[22] * **因子构建思路**:该因子主要衡量股票价格与成交量的相关性。一般而言,相关性越低,未来上涨的可能性越高[3]。 * **因子具体构建过程**:该因子是两个细分因子的合成因子。首先构建两个细分因子: * **价格与成交笔数相关性因子 (CorrPM)**:计算高频快照数据中价格与成交笔数的相关性。 * **价格与成交量相关性因子 (CorrPV)**:计算高频快照数据中价格与成交量的相关性。 然后,对上述两个因子进行等权合成[22]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的量价背离因子。 * **因子评价**:该因子近几年表现一直不太稳定,多空净值曲线趋近走平,但去年超额收益处于历史较高水平,今年以来表现良好[3][24]。 3. **因子名称:遗憾规避因子**[25] * **因子构建思路**:该因子基于行为金融学的遗憾规避理论,通过考察股票当天被投资者卖出后反弹的比例和程度来构建。如某只股票买入浮亏占比较高或程度较大时,预期收益更高;卖出后股价反弹的占比越高或程度越大时,预期收益更低[25]。 * **因子具体构建过程**:该因子是两个细分因子的合成因子。首先利用逐笔成交数据区分每笔交易的主动买卖方向,并加入小单和尾盘的限制来构建细分因子: * **卖出反弹占比因子 (LCVOLESW)**。 * **卖出反弹偏离因子 (LCPESW)**。 然后,对上述两个因子进行等权合成[31]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的遗憾规避因子。 * **因子评价**:该因子样本外超额收益稳定,表明A股投资者的遗憾规避情绪依然会显著影响股价的预期收益,但今年以来表现一般[3][34]。 4. **因子名称:斜率凸性因子**[36] * **因子构建思路**:该因子从投资者耐心与供求关系弹性的角度出发,利用限价订单簿的委托量和委托价信息,刻画订单簿的斜率和凸性对预期收益的影响。买方斜率越大(需求弹性小)或卖方斜率越小(供给弹性大),对应股票更高的预期收益[36]。 * **因子具体构建过程**:该因子是两个细分因子的合成因子。首先将委托量数据按档位累加,用委托价和累计委托量计算买卖方的订单簿斜率,并区分为: * **低档斜率因子 (Slope_ablW)**。 * **高档位卖方凸性因子 (Slope_alhW)**。 然后,对上述两个因子进行等权合成[39]。最后,对合成后的因子进行行业和市值中性化处理,得到最终的斜率凸性因子。 * **因子评价**:该因子自2016年以来收益保持平稳,但在样本外整体表现也比较平淡,年度表现欠佳[3][41]。 5. **因子名称:高频“金”组合合成因子**[3][43] * **因子构建思路**:将上述表现较好的高频因子(价格区间因子、量价背离因子、遗憾规避因子)进行合成,构建用于中证1000指数增强的策略因子[3]。 * **因子具体构建过程**:将价格区间因子、量价背离因子、遗憾规避因子这三类高频因子进行等权合成[3][43]。 6. **因子名称:高频&基本面共振组合合成因子**[4][47] * **因子构建思路**:将高频因子与基本面因子结合,利用其低相关性以提升多因子投资组合的表现[47]。 * **因子具体构建过程**:将高频“金”组合合成因子(基于价格区间、量价背离、遗憾规避因子)与三个比较有效的基本面因子(一致预期、成长和技术因子)进行等权合成[4][47]。 因子的回测效果 1. **价格区间因子**[13] * 多空收益率(上周):-2.20% * 多空收益率(本月以来):-2.20% * 多空收益率(今年以来):12.72% * 多头超额收益率(上周):-0.05% * 多头超额收益率(本月以来):-0.05% * 多头超额收益率(今年以来):5.08% 2. **量价背离因子**[13][22] * 多空收益率(上周):0.77% * 多空收益率(本月以来):0.77% * 多空收益率(今年以来):17.97% * 多头超额收益率(上周):0.21% * 多头超额收益率(本月以来):0.21% * 多头超额收益率(今年以来):5.97% 3. **遗憾规避因子**[13] * 多空收益率(上周):-0.20% * 多空收益率(本月以来):-0.20% * 多空收益率(今年以来):17.27% * 多头超额收益率(上周):-0.47% * 多头超额收益率(本月以来):-0.47% * 多头超额收益率(今年以来):0.34% 4. **斜率凸性因子**[3][38] * 多空收益率(上周):-1.67% (基于中证800指数) * 多空收益率(本月以来):-1.67% (基于中证800指数) * 多空收益率(今年以来):-13.85% (基于中证800指数) * 多头超额收益率(上周):-0.66% (基于中证800指数) * 多头超额收益率(本月以来):-0.66% (基于中证800指数) * 多头超额收益率(今年以来):-4.58% (基于中证800指数) 量化模型与构建方式 1. **模型名称:高频“金”组合中证1000指数增强策略**[3][43] * **模型构建思路**:基于合成的高频“金”组合因子,构建中证1000指数增强策略[3]。 * **模型具体构建过程**:使用高频“金”组合合成因子进行选股。策略调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数。为降低调仓成本,加入了换手率缓冲机制[43]。 2. **模型名称:高频&基本面共振组合中证1000指数增强策略**[4][47] * **模型构建思路**:基于合成的高频&基本面共振组合因子,构建中证1000指数增强策略,旨在结合高频因子和基本面因子的优势[4][47]。 * **模型具体构建过程**:使用高频&基本面共振组合合成因子进行选股。策略调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数[47]。 模型的回测效果 1. **高频“金”组合中证1000指数增强策略**[43][46][48] * 年化收益率:9.75% * 年化波动率:23.92% * Sharpe比率:0.41 * 最大回撤率:47.77% * 双边换手率(周度):14.66% * 年化超额收益率:10.09% * 跟踪误差:4.28% * 信息比率(IR):2.36 * 超额最大回撤:6.04% * 超额收益率(上周):0.12% * 超额收益率(本月以来):0.12% * 超额收益率(今年以来):6.15% 2. **高频&基本面共振组合中证1000指数增强策略**[47][50][52] * 年化收益率:14.04% * 年化波动率:23.54% * Sharpe比率:0.60 * 最大回撤率:39.60% * 双边换手率(周度):22.54% * 年化超额收益率:14.28% * 跟踪误差:4.18% * 信息比率(IR):3.41 * 超额最大回撤:4.52% * 超额收益率(上周):-0.45% * 超额收益率(本月以来):-0.45% * 超额收益率(今年以来):6.60%
高频因子跟踪
国金证券· 2025-10-20 19:49
量化因子与构建方式 1. 价格区间因子 **因子构建思路**:衡量股票在日内不同价格区间成交的活跃程度,以体现投资者对未来走势的预期[3] **因子具体构建过程**:利用三秒快照数据,分析不同价格区间的成交行为[12] - 高价格80%区间成交量因子(VH80TAW):计算日内高价格80%区间的成交量,与未来收益呈负相关[12] - 高价格80%区间成交笔数因子(MIH80TAW):计算日内高价格80%区间的成交笔数,与未来收益呈负相关[12] - 低价格10%区间每笔成交量因子(VPML10TAW):计算日内低价格10%区间的平均每笔成交量,与未来收益呈正相关[12] - 合成方法:以25%、25%和50%的权重对三个细分因子进行合成,然后进行行业市值中性化处理[14] **因子评价**:展现出了较强的预测效果,今年以来表现比较稳定[3] 2. 量价背离因子 **因子构建思路**:衡量股票价格与成交量的相关性,相关性越低,未来上涨可能性越高[3] **因子具体构建过程**:利用高频快照数据计算价格与成交量的相关关系[22] - 价格与成交笔数相关性因子(CorrPM):计算价格与成交笔数的相关性[22] - 价格与成交量相关性因子(CorrPV):计算价格与成交量的相关性[22] - 合成方法:对两个细分因子进行等权合成,然后进行行业市值中性化处理[23] **因子评价**:近几年表现一直不太稳定,多空净值曲线趋近走平[3] 3. 遗憾规避因子 **因子构建思路**:通过考察股票当天被投资者卖出后反弹的比例和程度,体现投资者的遗憾规避情绪对股价预期收益的影响[3] **因子具体构建过程**:利用逐笔成交数据区分主动买卖方向,加入小单和尾盘限制[26] - 卖出反弹占比因子(LCVOLESW):衡量卖出后股价反弹的占比[26] - 卖出反弹偏离因子(LCPESW):衡量卖出后股价反弹的程度[26] - 合成方法:对两个细分因子进行等权合成,然后进行行业市值中性化处理[32] **因子评价**:样本外超额收益稳定,表明A股投资者的遗憾规避情绪会显著影响股价预期收益[3] 4. 斜率凸性因子 **因子构建思路**:从投资者耐心与供求关系弹性角度出发,刻画订单簿的斜率和凸性对预期收益的影响[3] **因子具体构建过程**:利用限价订单簿的委托量和委托价信息计算斜率[36] - 低档斜率因子(Slope_abl):计算低档位的订单簿斜率[36] - 高档位卖方凸性因子(Slope_alh):计算高档位的卖方凸性[36] - 合成方法:对两个细分因子进行等权合成,然后进行行业市值中性化处理[41] **因子评价**:因子自2016年以来收益保持平稳趋势[43] 量化模型与构建方式 1. 高频"金"组合中证1000指数增强策略 **模型构建思路**:将三类高频因子等权合成构建指数增强策略[3] **模型具体构建过程**: - 因子合成:将价格区间因子、量价背离因子、遗憾规避因子进行等权合成[3] - 调仓频率:周度调仓[44] - 手续费:单边千分之二[44] - 风险控制:加入换手率缓冲机制降低调仓成本[44] - 基准:中证1000指数[44] **模型评价**:在样本外表现出色,有较强的超额收益水平[47] 2. 高频&基本面共振组合中证1000指数增强策略 **模型构建思路**:将高频因子与有效的基本面因子结合提升多因子投资组合表现[48] **模型具体构建过程**: - 因子构成:高频因子(价格区间、量价背离、遗憾规避) + 基本面因子(一致预期、成长、技术因子)[48] - 合成方法:等权合成[48] - 调仓频率:周度调仓[48] - 基准:中证1000指数[48] **模型评价**:各项业绩指标均有提升,样本外表现稳定,有较强的超额收益水平[50] 因子的回测效果 1. 价格区间因子 - 上周多头超额收益率:0.28%[2][13] - 本月以来多头超额收益率:-0.41%[2][13] - 今年以来多头超额收益率:4.70%[2][13] - 上周多空收益率:-0.42%[13] - 本月以来多空收益率:-0.60%[13] - 今年以来多空收益率:13.53%[13] 2. 量价背离因子 - 上周多头超额收益率:0.18%[2][13] - 本月以来多头超额收益率:-1.47%[2][13] - 今年以来多头超额收益率:5.73%[2][13] - 上周多空收益率:1.82%[13] - 本月以来多空收益率:0.50%[13] - 今年以来多空收益率:15.99%[13] 3. 遗憾规避因子 - 上周多头超额收益率:-0.86%[2][13] - 本月以来多头超额收益率:-1.21%[2][13] - 今年以来多头超额收益率:1.04%[2][13] - 上周多空收益率:0.73%[13] - 本月以来多空收益率:1.04%[13] - 今年以来多空收益率:15.54%[13] 4. 斜率凸性因子 - 上周多头超额收益率:0.96%[2] - 本月以来多头超额收益率:0.63%[2] - 今年以来多头超额收益率:-7.40%[2] 模型的回测效果 1. 高频"金"组合中证1000指数增强策略 - 年化收益率:9.31%[44] - 年化波动率:23.97%[44] - Sharpe比率:0.39[44] - 最大回撤率:47.77%[44] - 双边换手率(周度):14.66%[44] - 年化超额收益率:10.20%[3][44] - 跟踪误差:4.28%[44] - 信息比率:2.38[44] - 超额最大回撤:6.04%[3][44] - 上周超额收益:0.80%[3] - 本月以来超额收益:0.83%[3] - 今年以来超额收益:6.58%[3] 2. 高频&基本面共振组合中证1000指数增强策略 - 年化收益率:13.67%[50] - 年化波动率:23.59%[50] - Sharpe比率:0.58[50] - 最大回撤率:39.60%[50] - 双边换手率(周度):22.54%[50] - 年化超额收益率:14.49%[4][50] - 跟踪误差:4.19%[50] - 信息比率:3.46[50] - 超额最大回撤:4.52%[4][50] - 上周超额收益:1.14%[4] - 本月以来超额收益:1.22%[4] - 今年以来超额收益:7.66%[4]
高频选股因子周报:高频因子表现分化,深度学习因子依然强势。AI 增强组合分化,500 增强依然大幅回撤,1000 增强回撤收窄。-20250928
国泰海通证券· 2025-09-28 20:37
根据研报内容,以下是关于量化因子和模型的总结: 量化因子与构建方式 **1 因子名称:日内高频偏度因子** - 因子构建思路:基于股票日内高频收益的分布特征构建,捕捉收益分布的非对称性[13] - 因子具体构建过程:参考专题报告《选股因子系列研究(十九)——高频因子之股票收益分布特征》[13] **2 因子名称:日内下行波动占比因子** - 因子构建思路:通过分解已实现波动,衡量下行波动在总波动中的占比[18] - 因子具体构建过程:参考专题报告《选股因子系列研究(二十五)——高频因子之已实现波动分解》[18] **3 因子名称:开盘后买入意愿占比因子** - 因子构建思路:基于开盘后的交易行为数据,衡量买入意愿的强度[22] - 因子具体构建过程:参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[22] **4 因子名称:开盘后买入意愿强度因子** - 因子构建思路:进一步量化开盘后买入意愿的强度水平[26] - 因子具体构建过程:参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[26] **5 因子名称:开盘后大单净买入占比因子** - 因子构建思路:分析开盘后大单净买入在总交易中的占比[30] **6 因子名称:开盘后大单净买入强度因子** - 因子构建思路:衡量开盘后大单净买入的强度水平[35] **7 因子名称:改进反转因子** - 因子构建思路:对传统反转因子进行改进优化[40] **8 因子名称:尾盘成交占比因子** - 因子构建思路:分析尾盘成交在当日总成交中的占比[45] **9 因子名称:平均单笔流出金额占比因子** - 因子构建思路:衡量平均单笔流出金额的相对占比[51] **10 因子名称:大单推动涨幅因子** - 因子构建思路:分析大单交易对股价涨幅的推动作用[56] **11 因子名称:改进GRU(50,2)+NN(10)因子** - 因子构建思路:基于门控循环单元(GRU)和神经网络(NN)的深度学习模型[61] **12 因子名称:残差注意力LSTM(48,2)+NN(10)因子** - 因子构建思路:结合残差注意力机制的长短期记忆网络(LSTM)模型[62] **13 因子名称:多颗粒度模型-5日标签因子** - 因子构建思路:基于多时间颗粒度数据,使用5日收益标签训练[67] - 因子具体构建过程:因子基于双向AGRU训练得到[67] **14 因子名称:多颗粒度模型-10日标签因子** - 因子构建思路:基于多时间颗粒度数据,使用10日收益标签训练[68] - 因子具体构建过程:因子基于双向AGRU训练得到[68] 量化模型与构建方式 **1 模型名称:中证500 AI增强宽约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用相对宽松的约束条件[72] - 模型具体构建过程:优化目标为最大化预期收益,目标函数为$$max\sum\mu_{i}w_{i}$$,其中$w_i$为股票权重,$\mu_i$为预期超额收益[73] **2 模型名称:中证500 AI增强严约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用严格的约束条件[72] **3 模型名称:中证1000 AI增强宽约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用相对宽松的约束条件[72] **4 模型名称:中证1000 AI增强严约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用严格的约束条件[72] 因子的回测效果 **1 日内高频偏度因子**:历史IC 0.027,2025年IC 0.042,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.329,9月多空收益3.82%,2025YTD多空收益16.22%,2025年月胜率6/9,9月多头超额1.74%,2025YTD多头超额5.14%[9] **2 日内下行波动占比因子**:历史IC 0.025,2025年IC 0.036,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.326,9月多空收益2.86%,2025YTD多空收益13.58%,2025年月胜率7/9,9月多头超额0.55%,2025YTD多头超额1.41%[9] **3 开盘后买入意愿占比因子**:历史IC 0.032,2025年IC 0.030,历史e^(-rank mae) 0.322,2025年e^(-rank mae) 0.324,9月多空收益0.68%,2025YTD多空收益10.39%,2025年月胜率6/9,9月多头超额0.54%,2025YTD多头超额4.07%[9] **4 开盘后买入意愿强度因子**:历史IC 0.035,2025年IC 0.030,历史e^(-rank mae) 0.326,2025年e^(-rank mae) 0.329,9月多空收益0.65%,2025YTD多空收益11.29%,2025年月胜率7/9,9月多头超额0.60%,2025YTD多头超额4.52%[9] **5 开盘后大单净买入占比因子**:历史IC 0.041,2025年IC 0.035,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.324,9月多空收益1.49%,2025YTD多空收益15.60%,2025年月胜率8/9,9月多头超额0.35%,2025YTD多头超额7.93%[9] **6 开盘后大单净买入强度因子**:历史IC 0.033,2025年IC 0.028,历史e^(-rank mae) 0.323,2025年e^(-rank mae) 0.322,9月多空收益0.88%,2025YTD多空收益11.30%,2025年月胜率8/9,9月多头超额0.80%,2025YTD多头超额6.14%[9] **7 改进反转因子**:历史IC 0.032,2025年IC 0.016,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.331,9月多空收益-0.81%,2025YTD多空收益4.07%,2025年月胜率5/9,9月多头超额-0.63%,2025YTD多头超额3.61%[9] **8 尾盘成交占比因子**:历史IC 0.049,2025年IC 0.030,历史e^(-rank mae) 0.332,2025年e^(-rank mae) 0.323,9月多空收益2.13%,2025YTD多空收益14.11%,2025年月胜率7/9,9月多头超额0.58%,2025YTD多头超额6.10%[9] **9 平均单笔流出金额占比因子**:历史IC 0.020,2025年IC 0.009,历史e^(-rank mae) 0.317,2025年e^(-rank mae) 0.318,9月多空收益-0.48%,2025YTD多空收益3.59%,2025年月胜率5/9,9月多头超额0.80%,2025YTD多头超额3.67%[9] **10 大单推动涨幅因子**:历史IC 0.016,2025年IC 0.010,历史e^(-rank mae) 0.322,2025年e^(-rank mae) 0.327,9月多空收益2.23%,2025YTD多空收益7.36%,2025年月胜率7/9,9月多头超额1.19%,2025YTD多头超额3.34%[9] 模型的回测效果 **1 中证500 AI增强宽约束组合**:上周超额收益-1.36%,9月超额收益-3.85%,2025YTD超额收益0.94%,2025年周胜率23/39[13] **2 中证500 AI增强严约束组合**:上周超额收益-1.35%,9月超额收益-1.33%,2025YTD超额收益3.70%,2025年周胜率24/39[13] **3 中证1000 AI增强宽约束组合**:上周超额收益0.40%,9月超额收益0.42%,2025YTD超额收益9.15%,2025年周胜率26/39[13] **4 中证1000 AI增强严约束组合**:上周超额收益-0.19%,9月超额收益0.67%,2025YTD超额收益14.01%,2025年周胜率25/39[13]
高频因子跟踪:上周价格区间因子表现优异
国金证券· 2025-08-19 15:29
量化因子与构建方式 1. **因子名称**:价格区间因子 - **构建思路**:衡量股票在日内不同价格区间成交的活跃程度,反映投资者对未来走势的预期[12] - **具体构建过程**: 1. 使用高频快照数据提取高价格80%区间成交量因子(VH80TAW)、高价格80%区间成交笔数因子(MIH80TAW)和低价格10%区间每笔成交量因子(VPML10TAW) 2. 按25%、25%、50%权重合成因子 3. 对合成因子进行行业市值中性化处理[12][14] - **因子评价**:样本外表现稳定,超额收益曲线持续向上[17] 2. **因子名称**:量价背离因子 - **构建思路**:通过价格与成交量的相关性衡量市场情绪,低相关性预示未来上涨概率更高[22] - **具体构建过程**: 1. 计算快照成交价与成交笔数的相关性(CorrPMW)、成交价与成交量的相关性(CorrPVW) 2. 对两个细分因子等权合成 3. 进行行业市值中性化处理[22][25] - **因子评价**:近年收益趋平但今年以来表现回升[26] 3. **因子名称**:遗憾规避因子 - **构建思路**:基于行为金融学理论,捕捉投资者卖出后股价反弹的规避情绪[27] - **具体构建过程**: 1. 使用逐笔数据计算卖出反弹占比因子(LCVOLESW)和卖出反弹偏离因子(LCPESW) 2. 等权合成后做行业市值中性化[30][33] - **因子评价**:样本外超额收益稳定,但今年以来表现一般[36] 4. **因子名称**:斜率凸性因子 - **构建思路**:通过订单簿斜率和凸性分析供需弹性,反映投资者价格敏感度[37] - **具体构建过程**: 1. 提取低档位买方斜率因子(Slope_abl)和高档位卖方凸性因子(Slope_alh) 2. 等权合成并做行业市值中性化[39][40] - **因子评价**:2016年后收益平稳但样本外表现平淡[42] --- 量化模型与构建方式 1. **模型名称**:高频"金"组合中证1000指数增强策略 - **构建思路**:将价格区间、量价背离、遗憾规避因子等权合成构建增强策略[3] - **具体构建过程**: 1. 周频调仓,单边手续费率0.2% 2. 加入换手率缓冲机制控制成本 3. 基准为中证1000指数[44][45] 2. **模型名称**:高频&基本面共振组合中证1000指数增强策略 - **构建思路**:结合高频因子与基本面因子(一致预期、成长、技术因子)提升表现[49] - **具体构建过程**: 1. 高频因子与基本面因子等权合成 2. 相同调仓频率和风控机制[50][51] --- 因子的回测效果 | 因子名称 | 上周多头超额 | 本月多头超额 | 今年以来多头超额 | 多空收益率(今年以来) | |------------------|--------------|--------------|-------------------|------------------------| | 价格区间因子 | 0.40%[13] | 0.51%[13] | 5.86%[13] | 13.69%[13] | | 量价背离因子 | -0.24%[13] | 1.53%[13] | 9.00%[13] | 16.21%[13] | | 遗憾规避因子 | 0.27%[13] | -0.49%[13] | 2.32%[13] | 12.41%[13] | | 斜率凸性因子 | -1.74%[2] | -2.46%[2] | -5.90%[2] | -12.37%[39] | --- 模型的回测效果 | 模型名称 | 年化超额收益 | 跟踪误差 | IR | 超额最大回撤 | |------------------------------------|--------------|----------|-------|--------------| | 高频"金"组合增强策略 | 10.51%[45] | 4.25%[45]| 2.47[45] | 6.04%[45] | | 高频&基本面共振组合增强策略 | 14.57%[51] | 4.16%[51]| 3.50[51] | 4.52%[51] |