Workflow
OmniRetarget
icon
搜索文档
“盲眼”机器人在完全看不见的情况下30秒跑酷首秀惊艳!
具身智能之心· 2025-10-07 11:03
文章核心观点 - 亚马逊机器人团队FAR发布首个名为OmniRetarget的人形机器人研究成果,该技术能在完全无视觉感知的情况下完成复杂任务[2][9] - OmniRetarget是一个开源数据生成引擎,通过交互网格方法将人类演示转化为高质量机器人运动参考,实现从仿真到硬件的零样本迁移[12][13] - 该技术在运动学质量和下游策略性能上全面领先现有基线方法,成功率领先10%以上[16][42] 技术原理与方法 - 核心技术是基于交互网格的动作重定向方法,通过建模机器人、物体和地形之间的空间和接触关系来保留必要交互[15] - 交互网格被定义为一个体积结构,通过德劳内四面体化构建,并最小化拉普拉斯形变能量来保持空间关系[19][21][22] - 采用顺序二次规划风格的迭代方法求解约束非凸优化问题,保证时间连续性和平滑性[23][24] - 通过参数化改变物体配置、形状或地形特征,将单个人类演示转化为丰富多样的数据集[28][32] 性能表现与实验结果 - 在机器人-物体交互任务中,OmniRetarget的下游强化学习策略成功率达到82.20% ± 9.74%,显著高于基线方法[41] - 在机器人-地形交互任务中,成功率进一步提升至94.73% ± 22.33%[41] - 在完整增强数据集上训练的成功率为79.1%,与仅使用标称动作的82.2%相近,表明增强方法能扩大动作覆盖范围而不显著降低性能[39] - 在运动学质量指标上,OmniRetarget在穿透、脚部打滑和接触保留方面整体优于所有基线方法[41] 团队背景与发展前景 - 研发团队Amazon FAR成立仅七个多月,由华人学者领衔,负责人Rocky Duan来自著名机器人技术公司Covariant[43][48] - 团队核心成员包括UC Berkeley的Pieter Abbeel等机器人领域知名学者[44][45] - 这是亚马逊在人形机器人(足式)领域的首次尝试,展示了公司在机器人技术方面的强大研发能力[49][50]
亚马逊“盲眼”机器人30秒跑酷首秀惊艳!华人学者领衔
量子位· 2025-10-06 13:42
henry 发自 凹非寺 量子位 | 公众号 QbitAI 你见过这样的"盲眼"机器人demo吗? 它在完全看不见的情况下——没有摄像头、雷达或任何感知单元——主动搬起9斤重的椅子,爬上1米高的桌子,然后翻跟头跳下。 不光耍酷,干起活来,搬箱子也不在话下。 还能一个猛子跳上桌子。 手脚并用爬坡也照样OK。 这些丝滑小连招来自 亚马逊机器人团队FAR (Frontier AI for Robotics)发布的 首个 人形机器人(足式)研究成果—— OmniRetarget ! OmniRetarget使强化学习策略能够在复杂环境中学习长时程的"移-操一体"(loco-manipulation)技能,并实现从仿真到人形机器人的零样本 迁移。 网友表示:又能跑酷、还能干活,这不比特斯拉的擎天柱强10倍? 此外,保留任务相关的交互使得数据能够进行高效的数据增强,进而从单个演示推广到不同的机器人本体、地形和物体配置,以减少不同变体 的数据收集成本。 在与其他动作重定向方法的对比中,OmniRetarget在所有关键方面:硬约束、物体交互、地形交互、数据增强表现出了全面的方法优势。 | Methods | Hard Ki ...