ShuffleNet

搜索文档
「走出新手村」十次 CV 论文会议投稿的经验总结
自动驾驶之心· 2025-06-30 20:33
作者 | hzwer 黄哲威 编辑 | 自动驾驶之心 原文链接: https://zhuanlan.zhihu.com/p/627032371 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 本文只做学术分享,如有侵权,联系删文 以下内容后续更新在:https://github.com/hzwer/WritingAIPaper 导语 2021年来,笔者在多次论文被拒稿期间,开始研究和反思顶会论文生产到投稿的全流程,并全程参与了十 几篇论文的审稿。近一年笔者有三篇论文录用 (笔者主页),总共投了 5+4+1=10 次,其中感悟颇多。本文希 望结合经历回顾,为新手提供一个指南,提高论文的质量和命中率。本文深度参考了计算机科学家 Simon Jones 的 《How to write a great research paper》和北京大学施柏鑫老师的《从审稿人视角,谈谈怎么写一篇 CVPR论文》。 本文有 pdf 版本,全文 5k 字,求点赞求收藏( 论文生产发表流程 为了方便读者理解,先科普一下一般的深度学 ...
专访张祥雨:多模态推理和自主学习是未来的 2 个 「GPT-4」 时刻
海外独角兽· 2025-06-08 12:51
多模态大模型发展现状 - 阶跃星辰发布中国首个千亿参数原生多模态大模型Step-1V 基于业内最早的图文生成理解一体化框架DreamLLM [3] - 多模态领域预计未来2-3年将迎来两个GPT-4时刻:多模态推理和自主学习 [3] - 当前多模态生成理解一体化面临四大挑战:语言对视觉控制能力弱 图文对齐不精确 数据质量有限 生成模块无法反向影响理解模块 [3] 计算机视觉领域瓶颈 - CV领域长期缺乏类似NLP的GPT时刻 主要受限于数据标注依赖和自监督方法局限性 [13][15] - 对比学习和MIM等方法在小模型有效 但缺乏scale up特性 因其学习的不变性来自人工设计而非数据驱动 [16][18][19] - 静态图像数据存在本质缺陷:生成 理解与人类对齐三者割裂 难以实现智能质变 [24][25][26] 多模态技术突破方向 - 短期解决方案是利用图文对齐数据 通过文字的自闭环特性赋予模型智能能力 [27] - 长期需探索视频和具身系统 视频数据蕴含更丰富信息但利用难度更高 [27] - 生成理解一体化需先解决视觉空间CoT问题 当前action space过于受限 [55][56] 大模型训练范式演进 - Next Token Prediction存在本质缺陷:更大模型在数学等推理任务上表现反降 因倾向跳步且优化目标与任务目标存在gap [38][40][42] - Rule-based RL通过直接优化任务目标 可抑制跳步并强化稳定思维路径 [44] - o1范式突破在于激发Meta CoT 允许模型在关键节点反悔重试 使推理从单线变为图状结构 [44][53] 多模态数据影响 - 图文混排训练中生成模块产生的gradient噪声大且信息量低 可能破坏语义理解 [62] - 高质量多模态数据应确保图文强相关 避免无关数据导致模型confuse [63][64] - 视频数据蕴含丰富思维过程但清洗难度大 是扩展action space的重要方向 [65][66] 未来技术趋势 - 多模态GPT时刻预计1年内到来 需解决生成可控性和视觉空间推理问题 [68][69] - 当前long context方案存在注意力涣散问题 未来可能采用multi-agent分层记忆架构 [69][73][74] - 模型自主学习是ASI关键路径 需解决环境scaling和自然语言反馈利用问题 [78][80][82]