Workflow
声音克隆
icon
搜索文档
一个极具争议的开源项目,「微信克隆人」火了!
菜鸟教程· 2025-05-15 16:33
WeClone项目核心功能 - 支持通过微信聊天记录微调大语言模型(LLM),捕捉用户语言习惯和表达方式,基于LoRA框架支持0.5B-7B规模模型如ChatGLM3-6B、Qwen2.5-7B等 [12] - 模型训练需约16GB显存,满足小样本低资源场景,训练效率高 [13] - 语音克隆模块通过0.5B参数模型和5秒语音样本实现95%相似度的声音克隆,基于Tacotron或WavLM模型 [15] - 支持多平台部署至微信/QQ/Telegram等,通过AstrBot框架实现实时对话 [16] 技术实现路径 - **数据预处理**:微信CSV/SQLite转为JSON格式,清洗敏感信息并保留时间戳,提供禁用词过滤功能 [20][27] - **模型微调**:采用ChatGLM3-6B基础模型,LoRA框架减少可训练参数,支持单机/多卡分布式训练 [20][21][36] - **部署方案**:FastAPI/Flask打包模型,支持GPU/CPU混合部署,自定义参数配置 [22][37] 应用场景 - 个人助理定制:自动回复消息、处理邮件等事务 [17] - 内容创作:生成特定风格文本如推文/脚本,支持多账号运营 [17] - 数字永生:创建个人或他人的永久数字分身 [18] 安装与训练流程 - 环境依赖Python 3.9,推荐使用uv管理环境,需安装16GB显存GPU [23][24] - 数据准备需通过PyWxDump解密微信数据库,导出CSV至指定目录 [26] - 训练参数可调整batch_size/epochs等,单卡训练示例loss值3.5(2万条数据) [34][36] - 推理支持浏览器demo或API接口测试,部署需配置AstrBot服务 [37][40] 模型获取 - 优先从Hugging Face下载ChatGLM3模型,备选魔搭社区需替换modeling_chatglm.py文件 [29][32]