Workflow
思维链(Chain of Thought
icon
搜索文档
一文讲透Agent的底层逻辑
虎嗅· 2025-10-22 22:47
AI Agent核心观点 - AI Agent能力的质变关键不在于底层大模型智力的增长,而在于围绕模型设计的有效"认知流程" [3] - 行业对Agent存在两种认知误区:过度神秘化或过度简化,导致沟通成本很高 [1][2] - 从Chatbot到Agent的进化是从"优雅的文本统计模仿"转向"可靠的行动派"的本质转变 [47][52] Agent能力演进阶段 - 阶段一原生天才:对应基础API调用,一次性黑盒生成答案,无法保证可靠性 [20] - 阶段二思考者:引入思维链(CoT)流程,将复杂任务分解为线性推理子任务,降低幻觉概率 [22] - 阶段三细心人:通过自我反思(Reflexion)框架实现"先行动、再复盘、后修正"的迭代流程,在HumanEval代码生成任务上达到91%准确率,超越GPT-4的80%记录 [25][26] - 阶段四战略家:具备规划能力,将宏大目标分解为逻辑清晰的子任务清单,提升执行效率和确定性 [29] - 阶段五学者:通过ReAct框架实现思考->行动->观察循环,将AI从封闭大脑转变为能与现实世界互动的行动者 [31][34][38] 流程驱动的三重价值 - 结构价值:用规划(Planning)和思维链(CoT)等流程为AI思考建立逻辑脚手架,对抗思维混沌 [56][59] - 迭代价值:通过反思(Reflection)和总结(Summarization)流程为记忆打造压缩算法,实现长期记忆演化 [61][64] - 交互价值:通过工具使用(Tool Use)连接现实世界,确保获取真实质量而非高质量幻觉 [65][67] 理论基础与科学原理 - 控制论视角:Agent工作流程对应闭环控制系统,通过反馈机制实现从开环到闭环的进化 [74][78][84] - 信息论视角:Agent工作是通过行动获取信息进行熵减的过程,系统性地消除不确定性 [86][90][91] - 两个理论共同为Agent框架的可靠性与有效性提供坚实科学基石 [94] 开发者角色转变 - 从"提示词工程师"转变为"Agent流程架构师",核心价值体现在思考结构、记忆机制和世界交互范式的设计上 [72][98][99] - 新角色三大核心职责:设计AI思考流程、赋能AI行动工具、构建AI决策上下文 [100][101][102] - 行业竞争力核心从模型参数大小转向智能流程优劣,LLM应用未来取决于流程设计 [96] 性能工程与架构演进 - 架构选型与剪枝:对简单场景使用LLM内置工具调用范式,降低token消耗和延迟 [106] - 并行化执行:通过异步I/O实现并行工具调用,将总耗时从"所有任务耗时之和"缩短为"最长任务耗时" [106] - 模型特化与路由:采用混合模型策略,轻量模型处理高频任务,重量模型处理复杂推理 [115] - 高效记忆架构:设计精准的记忆检索机制,以最低Token成本注入最关键信息 [115] 前沿架构探索方向 - 认知调度中心:实现智能工作流编排,如Anthropic的"Skills"功能允许模型自主选择、组合并调用多个工具 [108] - 规约驱动分层架构:通过技术规约(Specification)实现多Agent可靠协作,进化为可追溯的现代软件工程 [109] - 即时代码生成:让Agent从"使用工具"进化到"创造工具",通过CodeAct等框架动态生成代码扩展能力边界 [110]
Agent 一年半开发复盘:大家对 Agent 的理解有错位,有效的「认知流程」很关键
Founder Park· 2025-10-22 20:46
AI Agent核心观点 - AI Agent能力的质变关键不在于大模型智力增长,而在于围绕模型设计的认知流程[2] - 从Chatbot到Agent的进化本质是从静态生成转向动态执行流程[33] - 行业竞争核心已从模型参数转向智能流程设计优劣[62] Agent能力演进路径 - 学霸成长比喻展示Agent五阶段演进:原生天才→思考者→细心人→战略家→学者[15] - 思维链(CoT)强制模型分解复杂任务为线性推理子任务,降低幻觉概率[18] - 自我反思(Reflexion)框架引入"先行动-再复盘-后修正"迭代流程,HumanEval代码任务准确率达91%超越GPT-4的80%[20] - 规划能力将宏大目标分解为逻辑清晰子任务清单,提升执行确定性[22] - ReAct框架通过思考→行动→观察循环将AI从封闭大脑变为现实世界行动者[26] 流程设计三重价值 - 结构价值:规划流程在宏观层面建立逻辑脚手架,思维链在微观层面确保推理严谨[36][37] - 迭代价值:反思流程对记忆进行高效压缩,用极小上下文空间保留关键决策信息[42] - 交互价值:工具作为流程神经触手,通过ReAct框架确保AI获取真实世界信息[46][47] 科学理论基础 - 控制论视角:Agent实现从开环系统到闭环系统进化,通过反馈机制持续逼近目标[53][54] - 信息论视角:Agent工作本质是熵减过程,通过行动获取信息消除不确定性[59][60] 开发者角色转变 - 提示词工程师角色正成为历史,新兴角色是Agent流程架构师[64][65] - 新角色三大核心职责:设计AI思考流程、赋能行动工具、构建决策上下文[66][68][69] - 基础Think-Act-Observe循环是Agent心跳,架构师需在此基础上构建大脑与神经系统[70] 性能工程优化 - 架构剪枝:简单场景使用LLM内置工具调用范式降低延迟[70] - 并行化执行:对无依赖子任务实施并行工具调用,将总耗时缩短为最长任务耗时[71] - 模型路由:轻量模型处理高频任务,重量模型仅用于复杂推理节点[71] - 记忆架构:高效检索机制精准提取关键时刻所需知识[72] 前沿架构方向 - 认知调度中心:Anthropic Skills功能实现智能工作流编排,模型自主规划多工具协作[73] - 规约驱动分层:规划Agent生成技术规约作为执行Agent工作契约[74] - 即时代码生成:CodeAct框架让Agent动态创建工具,实现能力边界动态扩展[75]
GPT-5 核心成员详解 RL:Pre-training 只有和 RL 结合才能走向 AGI
海外独角兽· 2025-10-18 20:03
文章核心观点 - 强化学习与预训练的结合是当前AI发展的核心路径,两者相互依存,共同推动模型能力的提升[16][50] - 推理能力是AI发展的关键里程碑,其本质是模型寻找未知答案的思考过程,而不仅仅是简单的搜索[7][9] - 公司通过持续迭代其模型架构和训练方法,实现了从技术展示到实用产品的跨越,并确立了在行业中的领先地位[13][15][62] 强化学习与预训练的结合 - 预训练是基础,为强化学习提供必要的知识基础,没有预训练,强化学习难以奏效[16][22] - 强化学习必须建立在强大的预训练之上,而预训练同样需要强化学习的强化与闭环才能成功[3][50] - 公司自2019年就确立了“在大量数据上训练大型生成模型,然后进行强化学习”的战略路线,并延续至今[17] - 强化学习被比喻为训练狗的过程,通过奖励期望行为和惩罚不期望行为来优化模型策略[19][20] - 与相对标准化的预训练相比,强化学习更为复杂和精细,涉及更多动态组件,大规模扩展时挑战更大[33] 推理模型的技术演进 - 推理被定义为“找到一个未知答案的过程”,这比简单的“回答问题”需要更长的时间和更复杂的工作[7][9] - 思维链是模型将内部思考过程以人类语言和概念表达出来的能力,本质上是文字编码的思考过程[10][11] - 公司在推理模型的开发上遵循逐步扩展的训练实验路径,从展示能力的o1模型,到真正有用的o3模型,再到被视为o3迭代的GPT-5模型[13][15] - 模型思考时间的权衡由用户体验驱动,公司在产品层面提供不同模式让用户在输出质量和等待时间之间进行选择[12] - 编程能力是推理模型能力的一个自然副产品,研究人员常用编程问题测试新想法,使模型在该领域表现突出[43] 行业竞争与开源影响 - 公司在发布o1模型后,对许多研究实验室产生了意外冲击,而开源模型如DeepSeek的GRPO算法为其他实验室提供了快速跟进的操作说明书[30][32] - 数据标注行业必须不断自我更新,因为AI能力快速提升,几个月前需要人工标注的任务可能很快就能由AI自动完成[27] - 行业内的研究组织方式趋向于集中资源推进少数核心项目,而非进行大量分散的小赌注,以确保研究深度和效率[60] 智能体与未来发展方向 - 智能体系统的核心是让模型能够长时间自主思考,与更多系统和信息源交互,以完成复杂的长任务清单[34][35] - 目前大多数针对语言模型的强化学习仍是在线训练,但在与真实用户隔离的环境中进行,实时在线学习因安全考虑尚未大规模应用[36][38] - 对齐问题在某种程度上被视为一个强化学习问题,需要通过引导模型产生特定行为来实现,但这是一个持续演变的挑战[38][39] - 通向AGI的终极问题在于模型何时能在不依赖大量外部干预和人类修正的情况下实现自我改进[47] - 未来的发展路径更可能是在现有体系上持续叠加新方法,逐步淘汰旧元素,而非彻底推翻重来的转向[52]
在WAIC耳朵听出茧子的「智能体」,是时候系统学一下了
机器之心· 2025-08-04 15:05
文章核心观点 - 智能体成为AI大模型应用的重要方向,从单纯的聊天机器人转向具备主动思考、制定计划和使用工具的能力 [1] - 智能体系统通过整合工具使用、推理能力和自主规划,显著提升LLM解决复杂问题的能力 [6][38][112] - ReAct框架通过结合推理与行动,为智能体系统提供了通用的问题解决范式 [40][41][47] - 智能体发展分为多个层级,从标准LLM逐步演进到具备高度自主性的系统 [101][105][107][111] - 当前智能体系统仍处于早期阶段,可靠性是制约其发展的关键因素 [114][115] LLM及其能力 - 标准LLM采用文本到文本的结构,通用性是其核心优势 [5] - 现代智能体的高级能力建立在LLM基础功能之上 [6] - 推理风格的LLM通过生成思维链(CoT)显著提升推理能力 [24][25] - 专用推理模型(如DeepSeek)通过RLVR训练实现更复杂的推理行为 [29][31] 工具使用 - LLM可集成计算器、日历、搜索引擎等外部工具作为问题解决环节 [7] - LLM充当"大脑/指挥官"角色,协调不同专业工具协同工作 [8] - 工具使用方式包括:针对性微调、基于提示的方法和MCP协议 [9][11][16] - 基于提示的工具使用方法可支持LLM与数千个API集成 [15] 推理模型 - CoT提示通过引导LLM展示逐步推理过程提升表现 [24][25] - 推理模型采用不定量"思考"时间,思维链可达数千token [30] - RLVR训练使模型通过自我进化发展推理能力 [31][33] - 推理轨迹长度可控制模型思考深度,如OpenAI的o系列提供低中高三级 [34][35] ReAct框架 - 首个通用框架,通过LLM智能体自主分解并解决复杂问题 [40][41] - 关键创新:允许语言作为行动形式,智能体可输出"思考" [46][47] - 思维模式包括:任务分解、计划制定、进度跟踪等 [53][55] - 在知识密集型推理和决策制定任务中表现优异 [63][64][77] - 与CoT结合可进一步提升性能,支持两种模式切换 [78][80] 智能体系统演进 - 从标准LLM(Level 0)到具备完全自主性的系统(Level 3) [101][111] - Level 1: 集成工具使用,克服知识截止和幻觉问题 [104][105] - Level 2: 引入问题分解框架,如ReAct [107][109] - Level 3: 增加自主行动能力,如自动提交PR的Codex [111] - 理想系统整合推理LLM、标准LLM、工具和行动能力 [112] 行业现状与未来 - 当前智能体系统仍脆弱,单步错误可能导致整体失败 [114] - 可靠性是制约因素,需提升LLM稳健性 [114] - 研究重点:多智能体系统、领域微调、评估方法 [114] - 预计短期内能力和通用性将显著提升 [115]
细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈
量子位· 2025-06-16 18:30
多模态数学推理的挑战与突破 传统方法的局限性 - 传统思维链推理方法在视觉与数学结合场景下表现不佳,易忽略视觉输入中的数学细节导致推理错误[2] - 现有视觉CoT方法存在三大瓶颈:粗粒度图像区域选择破坏数学元素关联性[4]、通用视觉编码器对数学图像感知力不足[5]、过度依赖外部工具导致高成本低通用性[6] MINT-CoT的创新设计 - 提出动态Interleave Token机制,通过计算隐藏层相似度实时选取最相关视觉token,实现文本与数学图像元素的细粒度融合[9] - 突破传统矩形区域限制,可灵活捕捉几何图形、坐标轴等结构化数学元素,支持任意形状视觉区域选择[9] - 采用轻量化架构设计,无需依赖外部工具即可完成端到端训练与推理[9] 数据与训练体系 - 构建5.4万条视觉交错推理样本数据集,通过四步流程实现token级图文对齐标注:网格划分→OCR文本映射→关键词提取→MLLM关联匹配[11] - 设计三阶段渐进训练策略:文本CoT微调→双损失监督的交错模态微调→强化学习优化视觉选择策略[13] 性能表现 - 在Qwen-VL-7B模型上应用MINT-CoT框架后,MathVista/GeoQA/MMStar三大基准分别提升32.59%/26.92%/23.2%[16] - 可视化结果显示模型能自主选择相关视觉token并与文本推理链动态交互,推理逻辑显著优于基线[15] 行业影响 - 该技术首次实现数学场景下视觉与思维链的深度融合,为结构化视觉推理建立新范式[17] - 方法论具备扩展性,未来可迁移至科学图表解析、工程图纸理解等专业领域[17]