思维链(Chain of Thought

搜索文档
细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈
量子位· 2025-06-16 18:30
多模态数学推理的挑战与突破 传统方法的局限性 - 传统思维链推理方法在视觉与数学结合场景下表现不佳,易忽略视觉输入中的数学细节导致推理错误[2] - 现有视觉CoT方法存在三大瓶颈:粗粒度图像区域选择破坏数学元素关联性[4]、通用视觉编码器对数学图像感知力不足[5]、过度依赖外部工具导致高成本低通用性[6] MINT-CoT的创新设计 - 提出动态Interleave Token机制,通过计算隐藏层相似度实时选取最相关视觉token,实现文本与数学图像元素的细粒度融合[9] - 突破传统矩形区域限制,可灵活捕捉几何图形、坐标轴等结构化数学元素,支持任意形状视觉区域选择[9] - 采用轻量化架构设计,无需依赖外部工具即可完成端到端训练与推理[9] 数据与训练体系 - 构建5.4万条视觉交错推理样本数据集,通过四步流程实现token级图文对齐标注:网格划分→OCR文本映射→关键词提取→MLLM关联匹配[11] - 设计三阶段渐进训练策略:文本CoT微调→双损失监督的交错模态微调→强化学习优化视觉选择策略[13] 性能表现 - 在Qwen-VL-7B模型上应用MINT-CoT框架后,MathVista/GeoQA/MMStar三大基准分别提升32.59%/26.92%/23.2%[16] - 可视化结果显示模型能自主选择相关视觉token并与文本推理链动态交互,推理逻辑显著优于基线[15] 行业影响 - 该技术首次实现数学场景下视觉与思维链的深度融合,为结构化视觉推理建立新范式[17] - 方法论具备扩展性,未来可迁移至科学图表解析、工程图纸理解等专业领域[17]
大模型推理上限再突破:「自适应难易度蒸馏」超越R1蒸馏,长CoT语料质量飞升
机器之心· 2025-05-04 12:57
本文作者均来自中兴通讯无线研究院「大模型深潜」团队。团队重点攻关方向包括「推理模型构建:蒸馏与强化学习方法」、「无线通信故障定位与根因分析推 理模型」、「多模态推理模型」和「推理加速技术」。核心成员毕业于中国科学技术大学、中国科学院软件研究所等知名高校与科研院所。 近年来,「思维链(Chain of Thought,CoT)」成为大模型推理的显学,但要让小模型也拥有长链推理能力却非易事。 中兴通讯无线研究院「大模型深潜团队」从 「数据静态经验流」 的角度切入,首创 「LLM 自适应题目难度蒸馏」 方法,一举将高质量 CoT 语料的生产效率与效 果同步拉满。 论文标题:Rethinking the Generation of High-Quality CoT Data from the Perspective of LLM-Adaptive Question Difficulty Grading 论文链接:https://arxiv.org/pdf/2504.11919 这促使业界对参数量低于 70 亿的小型模型开展持续研究,尤其聚焦在复杂数学解题和代码生成等长链推理场景。值得注意的是,借助 DeepSeek- ...