Workflow
栅格化表示
icon
搜索文档
图森未来智驾方案解析:感知、定位、规划和数据闭环
自动驾驶之心· 2026-01-14 17:00
整体技术路线 - 核心思想是感知与规控紧耦合,并输出不确定性,感知系统应输出概率分布而非确定性结果[8][10] - 概率化感知输出障碍物的核心特征概率分布,包括位置、速度、大小和类别[11] - 不确定性估计至关重要,它使系统能够量化自身的认知不确定性,从而提前规避风险,对安全决策至关重要[11] - 面临的主要挑战包括算法局限、传感器噪声和环境本质模糊性带来的不可避免的不确定性,以及需要研发能输出概率分布的算法和能利用不确定性信息的规控算法[12][15] 感知系统 - 采用完全稀疏的感知栈,从成熟的二维目标检测出发生成初始“种子”目标,再通过Transformer和稀疏注意力机制收集信息并回归三维检测框[19][20] - 基于物体的多视角3D检测框架在透视视图下操作,无需显式构建BEV空间,通过稀疏注意力进行高效信息聚合[22][26] - 从2D检测框出发的优势在于:利用成熟的检测器框架和高质量易获取的标注数据,实现相机间的冗余互补,并利用图像丰富的语义信息实现高准确度和高召回率[24][27] - 极度压榨目标跟踪带来的时序信息,对同一目标在不同帧的信息进行融合[30] - 激光雷达感知采用稀疏计算,直接使用稀疏卷积,并基于类似聚类的逻辑处理点云,之后进行二阶段精修以补全目标形状[33][35][38] - 通过高度的信息冗余、长时间的观察和远距离感知来应对异常情况,例如使用多个摄像头长时间观察前方500米的路况[41] 定位系统 - 定位是自动驾驶的基石,目标是精确、实时地确定车辆自身的三维位置和三维姿态[46] - 方案核心是多传感器融合,输入传感器包括激光雷达、摄像头、RTK GNSS、IMU、轮速计和高精地图[47] - 算法核心能力是通过概率化方法处理各传感器输入,生成对车辆运动状态的最合理估计,并自动剔除异常值[48] - 两大技术创新点包括:能智能删除异常值的多信源定位融合算法,以及自研的RTK GNSS紧耦合定位方案,后者通过融合原始观测数据提升系统鲁棒性[49][50][53] - 针对卡车的核心挑战是超高精度姿态估计,尤其是偏航角,因为微小误差会被长感知距离急剧放大,例如100米外1°的偏航误差会导致约1.74米的横向偏差[50][53] - 方案达成的关键性能是将用于长距离感知的摄像头的姿态(主要是偏航角)精度控制在0.1°以内,这在100米处仅引入约0.17米的误差[53] 预测系统 - 早期方案包括栅格化表示和矢量化表示两种主流技术路线[58][65] - 栅格化表示将动态轨迹和静态地图信息渲染成多通道的鸟瞰图图像,使用CNN进行编码和预测,其优势是应用相对成熟、对结构化/非结构化道路兼容性好,但主要缺陷是交互信息难以包含在渲染中,且计算成本高[60][62][63][70] - 矢量化表示将地图元素和轨迹表示为矢量,通过图神经网络进行编码,其核心优势是能显式建模交互、数据表征紧凑高效,对结构化特征表达精确[66][71][72] - 公司方案采用一种务实的混合策略,针对不同场景结合两者优势:对于结构化道路主要采用自研的矢量化表示方法,对于非结构化道路则采用栅格化表示作为补充[73][75][77] 规划与控制 - 公司方案的核心是联合预测与规划,在处理高度动态的多车交互时,同时考虑安全性与灵活性[84] - 对于自车的每条规划轨迹,使用博弈论模型预测他车行为的概率,并加入Contingency分支来评估轨迹的安全性,允许自车偏离预定轨迹以应对他车未来的行为[84] - 通过Contingency方案,规划策略本质上考虑了未来多种可能场景下自车的应对措施[85] - 控制策略从开环控制升级为自适应闭环控制,以解决开环控制缺乏鲁棒性的问题[91][92] - 闭环控制的核心是反馈控制器,它实时读取车辆当前状态,与理想轨迹比较并计算出消除误差的控制指令,形成控制闭环[92][93] - 核心升级在于自适应与在线学习,控制器参数可根据实时表现或驾驶模式自动调整,并结合车辆动力学仿真进行在线学习和策略优化[94][95][99] - 该框架构建了一个完整的“感知-决策-控制-学习”闭环,其核心目标是在考虑他车不确定交互、自车物理约束和综合驾驶目标的前提下,通过全局优化找到最优自车控制策略[95][97] - 框架包含概率交互Agent模型、闭环车辆动力学仿真与在线学习、Reward/Cost模型和全局优化器等关键组件[98][100][105] 仿真与数据系统 - 端到端仿真是更高级别的集成测试,是将整个算法系统作为黑盒进行测试的基础[106][107] - 仿真系统架构包括仿真引擎、车辆模型、传感器模拟等,支持真实及人工编辑场景,用于测试整体算法流程[108][109] - 端到端仿真的常见实现包括路测数据回放和虚拟引擎渲染,两者各有优劣[111] - 公司采用轨迹级别的离线自动标注方案,通过双向多目标跟踪和轨迹特征提取,实现“一帧检测,永不丢失”的效果,其标注效果(如3D AP达到90.19)超越了人类标注水平[112][113][116]