生命起源
搜索文档
蛋白质合成,探索生命起源之谜
人民日报· 2025-09-28 17:47
你是否曾想过,40亿年前的地球宛如一座"炼狱"——火山喷涌,海洋沸腾,没有氧气。在万物混沌之 中,生命的种子究竟是如何萌发的?近日,英国伦敦大学学院的马修·波纳研究团队在《自然》杂志上 发表了一项突破性研究成果。他们通过模拟早期地球环境条件,首次成功实现了RNA(即核糖核酸, 存在于生物细胞、某些病毒及类病毒中的遗传信息载体)与氨基酸在无酶条件下的化学连接。自20世纪 70年代以来,这一难题一直困扰着科学界,而该成果为解答生命起源中"蛋白质如何合成"的关键问题提 供了全新思路。 分子如何迈出通向生命的第一步 生命起源与演化研究是全球科学家持续探索的重大课题,呈现出多学科交叉融合的特点。 在环境条件领域,科学界主要存在两种假说:一种是深海热液生命起源假说,认为热液喷口富含的矿物 可为早期化学反应提供能量与催化条件;另一种是陆地热泉环境假说。2024年11月,由中国科学家领衔 的国际团队发现了在地球最早期陆地热泉式的环境中,铁硫化物可通过光热催化作用还原二氧化碳,产 生甲醇,从而为地球生命起源的关键代谢途径提供物质基础。 在分子进化领域,相关研究多聚焦RNA、蛋白质和脂类等生物大分子的自组装与功能演化,以及"原始 ...
蛋白质合成,探索生命起源之谜(国际科技前沿)
人民网· 2025-09-26 06:53
研究突破 - 伦敦大学学院团队在《自然》杂志发表突破性研究成果,首次成功实现RNA与氨基酸在无酶条件下的化学连接[4] - 该成果解决了自20世纪70年代以来一直困扰科学界的难题,为理解生命起源中蛋白质如何合成的关键问题提供了全新思路[4][5] 科学背景与意义 - 研究旨在解答生命起源的核心悖论:在现有生命体中,蛋白质合成需要酶催化,而酶本身是蛋白质,其合成信息又存储在核酸中[6] - 此次发现证明,在生命出现前,无需复杂酶参与,RNA和氨基酸可在早期地球环境下自发连接,为分子迈出通向生命的第一步提供了关键线索[6] 研究方法与机理 - 团队采用温和方法,使用硫酯激活氨基酸,使其在模拟早期地球环境的中性水中能自发连接到RNA上[7] - 该反应具有高度选择性,能将氨基酸精准连接到RNA分子特定部位,避免了氨基酸间的随意反应[7] - 反应规模极小,研究团队通过磁共振成像技术和质谱分析技术等多种分子结构探测技术进行追踪[7] 理论融合与启示 - 该研究巧妙融合了生命起源研究中的“RNA世界”和“硫酯世界”两大主流理论[8] - 研究表明生命起源可能并非单一起点,而是新陈代谢系统与遗传系统从一开始就通过简单化学反应协同演化而成[8][9] - 该发现有助于缩小化学进化与生物进化之间的鸿沟,并为地外生命存在的可能性提供了新的思考角度[9] 应用前景与未来方向 - 研究成果未来或可应用于人工生命系统构建、原位蛋白质合成以及新型药物精准递送等领域[10] - 研究启示,细胞内化学微环境的失衡可能是导致疾病的重要因素,深入研究其动态变化可为疾病防控提供新策略[10] - 谷歌Deepmind等多家机构采用AI驱动的从头蛋白质设计,从零开始设计自然界不存在的蛋白质,为治疗癌症、自身免疫疾病等提供新思路[11]
科学家重现约40亿年前RNA与氨基酸的“第一次连接”—— 蛋白质合成,探索生命起源之谜(国际科技前沿)
人民日报· 2025-09-26 06:02
研究核心观点 - 伦敦大学学院研究团队在《自然》杂志发表突破性成果,首次在无酶条件下成功实现RNA与氨基酸的化学连接,为解答生命起源中"蛋白质如何合成"的关键问题提供了全新思路[1] - 该研究巧妙融合了"RNA世界"和"硫酯世界"两大主流生命起源理论,利用硫酯激活氨基酸并与RNA连接,表明新陈代谢系统与遗传系统可能从一开始就协同演化[4][6] - 研究成果有助于缩小化学进化与生物进化之间的鸿沟,为从无生命化学物质过渡到有生命生物系统提供了合理的化学基础,并对地外生命存在可能性提供了新思考角度[6] 研究背景与意义 - 生命起源与演化研究是全球科学家持续探索的重大课题,呈现多学科交叉融合特点,主要存在深海热液生命起源假说和陆地热泉环境假说[1] - 2024年11月由中国科学家领衔的国际团队发现,地球最早期陆地热泉环境中铁硫化物可通过光热催化还原二氧化碳产生甲醇,为生命起源关键代谢途径提供物质基础[1] - 理解RNA与氨基酸结合对于理解生命起源和蛋白质合成机制具有关键意义,其核心挑战是解释"先有鸡还是先有蛋"的经典悖论:没有核酸无法编码合成蛋白质,但没有蛋白质酶核酸的复制和翻译又无法进行[3] 研究方法与发现 - 研究团队采用温和方法,用硫酯来激活氨基酸,氨基酸与含硫化合物"泛硫乙胺"反应后变成硫酯形式,在模拟早期地球环境的中性水中能自发连接到RNA上[4] - 该反应具有高度选择性,能将氨基酸精准连接到RNA分子特定部位,避免了氨基酸之间的随意反应,这对于形成有功能短肽至关重要[4] - 由于反应规模极小,研究团队通过磁共振成像技术和质谱分析技术等多种分子结构探测技术对其进行追踪[4] - 研究认为该反应很可能发生在早期地球的湖泊或小水池中,而不是广阔的海洋中,因为海洋化学物质浓度过低不利于反应发生[5] 未来研究方向与应用 - 下一步研究团队将探究RNA序列如何优先结合特定氨基酸,从而启动编码蛋白质合成的指令,即遗传密码的起源[7] - 掌握温和可控的"RNA—蛋白质"化学连接机制,未来或可应用于人工生命系统构建、原位蛋白质合成以及新型药物精准递送等领域[7] - 谷歌Deepmind等多家机构采用AI驱动的从头蛋白质设计,从零开始设计自然界不存在的蛋白质,创造新型酶、生物传感器、治疗蛋白等,为治疗癌症、自身免疫疾病等提供新思路[8] - 研究成果启示深入研究细胞化学微环境动态变化规律,研发精准调控技术,可以为疾病防控提供新策略[7]
一场生命起源“侦探剧”在火星上演
科技日报· 2025-09-15 09:40
任务背景 - 美国“毅力”号火星车于2021年2月降落在杰泽罗陨石坑,其明确任务是寻找火星是否曾孕育过生命的线索 [1] - 选择杰泽罗陨石坑作为登陆点是因为卫星图像此前揭示该地曾有一条河流冲破坑壁,形成壮丽的三角洲 [1] 科学发现 - 近期《自然》杂志刊登了由美国石溪大学科学家主导的研究,主角是一组名为“光明天使”的泥岩层 [1] - 通过“毅力”号的岩石扫描数据,科学家发现“光明天使”泥岩层中散布着微小的富含磷酸铁和硫化铁的矿物聚集物 [1] - 这些矿物与有机碳的分布高度重合,在岩石中形成一幅隐形的生命地图 [1] - 这些矿物形成于沉积之后的低温环境,更可能是在水的作用下经过缓慢的化学反应逐渐沉淀而成,类似于地球湖泊或沼泽中微生物活动留下的痕迹 [2] - 在地球上,磷酸铁和有机碳的共存常常与微生物代谢有关,因此该矿物组合是一个强有力的潜在生物标志物候选者 [2] 研究方法与后续计划 - 科学家保持谨慎,认为这些矿物也可能是纯粹的化学反应产物,例如水与岩石长期作用或陨石撞击所致 [2] - “毅力”号已从该区域采集了多个岩心样本,并将它们密封在钛合金管中 [2] - 未来的火星任务计划将这些样本带回地球,以便用先进的实验室设备逐层剖析其化学结构,寻找更确凿的生命痕迹 [2]
模拟早期地球条件,助力揭示生命起源,化学家首次实现RNA与氨基酸连接
科技日报· 2025-09-02 14:33
研究突破 - 首次实现RNA与氨基酸在中性水溶液环境下的化学连接 解决了自20世纪70年代以来的科学难题 [1] - 该反应具有自发性和选择性 可能在40亿年前的原始地球池塘或湖泊中自然发生 [1] - 研究通过引入硫酯作为活化中间体 克服了过去高反应性分子在水中不稳定的技术障碍 [2] 机制创新 - 借鉴生物学机制使用含硫化合物泛硫胺生成硫酯 该物质已被证实可在早期地球条件下合成 [2] - 硫酯作为高能化合物在许多生化过程中起重要作用 被认为在生命起源中扮演关键角色 [2] - 新方法避免了氨基酸彼此结合的问题 实现了氨基酸与RNA的特异性连接 [2] 理论意义 - 研究成功将"RNA世界"假说与"硫酯世界"假说相结合 为生命起源提供了新的统一框架 [2] - 为解答生命起源中"蛋白质如何合成"的关键问题提供了实质性化学证据 [1] - 揭示了遗传密码起源的可能反应路径 团队下一步将探索RNA与特定氨基酸的优先结合机制 [2]
韦布望远镜揭示蝴蝶星云尘埃结构
科技日报· 2025-09-01 08:54
核心发现 - 英国卡迪夫大学团队利用詹姆斯·韦布空间望远镜对蝴蝶星云进行观测 揭示了其核心区域复杂的宇宙尘埃结构[1] - 蝴蝶星云位于天蝎座 距离地球约3400光年 属于双极星云 具有两个气体叶片构成的翅膀和环状致密尘带形成的身体[1] - 环状尘带由晶体硅酸盐如石英以及不规则形态的尘粒构成 尘粒大小约为百万分之一米 以宇宙尘埃标准属于较大尺寸 表明经历了长时间生长过程[1] 恒星特征 - 环状致密尘带遮蔽了星云中心恒星 该恒星是类似太阳恒星遗留下来的古老核心 为星云提供能量使其发光[1] - 中心恒星温度高达22万开尔文 是银河系中已知最炽热的行星状星云中心恒星之一[1] 尘埃组成 - 星云中同时存在相对平静环境下形成的冷晶体和剧烈环境下形成的无定形尘埃 为理解行星基本材料聚集提供了关键证据[1] - 观测发现碳基分子多环芳香烃 可能与生命化学成分相关 为行星和生命起源研究打开了新窗口[2] 研究意义 - 研究成果为研究地球及其他岩质行星的起源提供了重要参考[1] - 相关论文于8月26日发表于《皇家天文学会月刊》[1]