Workflow
系统提示学习
icon
搜索文档
YC AI 创业营第一天,Andrej Karpathy 的演讲刷屏了
Founder Park· 2025-06-18 22:28
软件演进与LLM特性 - 软件3.0时代以提示工程为核心,正在逐步取代代码编程(1.0)和神经网络(2.0),大量软件将被重写 [7][10][13] - LLMs具备高智商但存在认知缺陷,类比为"心智问题人类模拟系统",当前最大问题是缺乏"认知自我知识" [7][15][50] - 记忆功能对LLMs至关重要,需存储全局问题解决策略而非随机事实,可显著提升效能与数据利用率 [7][54] LLM基础设施属性 - LLMs类似公共基础设施,具有晶圆厂特性:巨额资本支出、深度技术研发、工艺节点复杂度高 [20][23][29] - LLMs具备操作系统属性,可复制/修改/分发,形成复杂软件生态,存在闭源供应商(如GPT/Claude)与开源生态(如Llama) [26][36][44] - LLMs应用路径逆向:从消费者到企业再到政府,不同于传统技术普及路径 [41][42] 产品设计与自主性 - Autonomy Slider概念允许按场景调节自主程度,如Cursor的Agent模式、Perplexity研究层级、特斯拉自动驾驶等级 [60][65][69] - 人机协作采用生成-验证循环:模型负责代码生成,人类通过GUI简化验证流程,需限制AI决策边界 [18][71] - 演示与产品存在巨大差距,可靠产品需满足works.all()而非works.any() [73][75] 行业趋势与嘉宾观点 - Y Combinator CEO指出2024年录取率0.8%,独角兽比例12%,强调创业者需务实高效并与用户紧密沟通 [94] - OpenAI CEO Sam Altman认为AI Agent是下一波浪潮,ChatGPT将演变为平台整合第三方工具 [101][103][104] - Anthropic联合创始人提出缩放定律仍是AI核心原则,任务长度处理能力每7个月翻倍 [112][115] - 特斯拉CEO Elon Musk预测超级智能可能在1-2年内出现,未来将有约10个主要AI实体 [149][153] 技术挑战与突破 - LLMs存在锯齿状智能现象:能解决复杂数学问题但可能答错简单比较题 [49][50] - 顺行性遗忘症问题可通过系统提示学习解决,形成新的学习范式 [54] - DeepMind科学家强调架构设计对性能影响比数据扩展大100倍,需聚焦清晰目标 [129][134]
AI也需要"记笔记":Karpathy从Claude 1.6万字提示词中看到的未来
歸藏的AI工具箱· 2025-05-12 16:28
系统提示词对比分析 - Claude的系统提示词长达16,739个单词,远高于OpenAI的ChatGPT中o4-mini系统提示的2,218个单词(仅为Claude的13%)[2][3] - Claude的提示词包含大量非结构化修改痕迹,疑似针对热点事件或问题修复的临时补丁,维护复杂度高[5] - 提示词中工具定义占比最高,详细规定了14个MCP工具的使用规范(如谷歌Drive搜索说明超1700字),其次是用户偏好和风格指引[8] 大语言模型学习范式革新 - 当前LLM主要依赖预训练(获取广泛知识)和微调(优化行为习惯),均需调整模型参数[9] - Karpathy提出"系统提示学习"新范式:类比人类通过显式笔记总结经验,而非直接改写大脑参数[10] - 理想状态下模型应自动生成/优化提示词,但当前Claude提示词仍完全由人工编写,效率低下[10][18] 系统提示学习的潜在价值 - 优势包括:更高维的数据利用(通过显式复盘吸收反馈)、更强的任务泛化能力[19] - 可能解决LLM现存痛点:如《记忆碎片》式依赖参数记忆,缺乏外部备忘录机制[12] - 需攻克技术难点:自动编辑提示词算法、提示编辑系统的自学习机制、显式知识向参数习惯的转化[20] 提示工程实践启示 - 结构化指令效果更优:Claude提示词使用列表/格式/示例,明确工具调用规则和用户交互边界[8][15] - 精准指令胜于模糊表达,需具体说明需求与限制条件(如知识截止日期、诗歌创作规范)[8][14] - 提示工程本质是沟通技巧延伸,非高深技术,普通用户可通过学习Claude提示词提升效果[16][17] 行业资源链接 - Karpathy推文探讨系统提示学习[21] - 第三方网页解析Claude提示词内容与结构[21]