Workflow
AI增强组合
icon
搜索文档
高频选股因子周报:高频因子表现分化,深度学习因子依然强势。AI 增强组合分化,500 增强依然大幅回撤,1000 增强回撤收窄。-20250928
国泰海通证券· 2025-09-28 20:37
根据研报内容,以下是关于量化因子和模型的总结: 量化因子与构建方式 **1 因子名称:日内高频偏度因子** - 因子构建思路:基于股票日内高频收益的分布特征构建,捕捉收益分布的非对称性[13] - 因子具体构建过程:参考专题报告《选股因子系列研究(十九)——高频因子之股票收益分布特征》[13] **2 因子名称:日内下行波动占比因子** - 因子构建思路:通过分解已实现波动,衡量下行波动在总波动中的占比[18] - 因子具体构建过程:参考专题报告《选股因子系列研究(二十五)——高频因子之已实现波动分解》[18] **3 因子名称:开盘后买入意愿占比因子** - 因子构建思路:基于开盘后的交易行为数据,衡量买入意愿的强度[22] - 因子具体构建过程:参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[22] **4 因子名称:开盘后买入意愿强度因子** - 因子构建思路:进一步量化开盘后买入意愿的强度水平[26] - 因子具体构建过程:参考专题报告《选股因子系列研究(六十四)——基于直观逻辑和机器学习的高频数据低频化应用》[26] **5 因子名称:开盘后大单净买入占比因子** - 因子构建思路:分析开盘后大单净买入在总交易中的占比[30] **6 因子名称:开盘后大单净买入强度因子** - 因子构建思路:衡量开盘后大单净买入的强度水平[35] **7 因子名称:改进反转因子** - 因子构建思路:对传统反转因子进行改进优化[40] **8 因子名称:尾盘成交占比因子** - 因子构建思路:分析尾盘成交在当日总成交中的占比[45] **9 因子名称:平均单笔流出金额占比因子** - 因子构建思路:衡量平均单笔流出金额的相对占比[51] **10 因子名称:大单推动涨幅因子** - 因子构建思路:分析大单交易对股价涨幅的推动作用[56] **11 因子名称:改进GRU(50,2)+NN(10)因子** - 因子构建思路:基于门控循环单元(GRU)和神经网络(NN)的深度学习模型[61] **12 因子名称:残差注意力LSTM(48,2)+NN(10)因子** - 因子构建思路:结合残差注意力机制的长短期记忆网络(LSTM)模型[62] **13 因子名称:多颗粒度模型-5日标签因子** - 因子构建思路:基于多时间颗粒度数据,使用5日收益标签训练[67] - 因子具体构建过程:因子基于双向AGRU训练得到[67] **14 因子名称:多颗粒度模型-10日标签因子** - 因子构建思路:基于多时间颗粒度数据,使用10日收益标签训练[68] - 因子具体构建过程:因子基于双向AGRU训练得到[68] 量化模型与构建方式 **1 模型名称:中证500 AI增强宽约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用相对宽松的约束条件[72] - 模型具体构建过程:优化目标为最大化预期收益,目标函数为$$max\sum\mu_{i}w_{i}$$,其中$w_i$为股票权重,$\mu_i$为预期超额收益[73] **2 模型名称:中证500 AI增强严约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用严格的约束条件[72] **3 模型名称:中证1000 AI增强宽约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用相对宽松的约束条件[72] **4 模型名称:中证1000 AI增强严约束组合** - 模型构建思路:基于深度学习因子构建指数增强组合,采用严格的约束条件[72] 因子的回测效果 **1 日内高频偏度因子**:历史IC 0.027,2025年IC 0.042,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.329,9月多空收益3.82%,2025YTD多空收益16.22%,2025年月胜率6/9,9月多头超额1.74%,2025YTD多头超额5.14%[9] **2 日内下行波动占比因子**:历史IC 0.025,2025年IC 0.036,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.326,9月多空收益2.86%,2025YTD多空收益13.58%,2025年月胜率7/9,9月多头超额0.55%,2025YTD多头超额1.41%[9] **3 开盘后买入意愿占比因子**:历史IC 0.032,2025年IC 0.030,历史e^(-rank mae) 0.322,2025年e^(-rank mae) 0.324,9月多空收益0.68%,2025YTD多空收益10.39%,2025年月胜率6/9,9月多头超额0.54%,2025YTD多头超额4.07%[9] **4 开盘后买入意愿强度因子**:历史IC 0.035,2025年IC 0.030,历史e^(-rank mae) 0.326,2025年e^(-rank mae) 0.329,9月多空收益0.65%,2025YTD多空收益11.29%,2025年月胜率7/9,9月多头超额0.60%,2025YTD多头超额4.52%[9] **5 开盘后大单净买入占比因子**:历史IC 0.041,2025年IC 0.035,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.324,9月多空收益1.49%,2025YTD多空收益15.60%,2025年月胜率8/9,9月多头超额0.35%,2025YTD多头超额7.93%[9] **6 开盘后大单净买入强度因子**:历史IC 0.033,2025年IC 0.028,历史e^(-rank mae) 0.323,2025年e^(-rank mae) 0.322,9月多空收益0.88%,2025YTD多空收益11.30%,2025年月胜率8/9,9月多头超额0.80%,2025YTD多头超额6.14%[9] **7 改进反转因子**:历史IC 0.032,2025年IC 0.016,历史e^(-rank mae) 0.324,2025年e^(-rank mae) 0.331,9月多空收益-0.81%,2025YTD多空收益4.07%,2025年月胜率5/9,9月多头超额-0.63%,2025YTD多头超额3.61%[9] **8 尾盘成交占比因子**:历史IC 0.049,2025年IC 0.030,历史e^(-rank mae) 0.332,2025年e^(-rank mae) 0.323,9月多空收益2.13%,2025YTD多空收益14.11%,2025年月胜率7/9,9月多头超额0.58%,2025YTD多头超额6.10%[9] **9 平均单笔流出金额占比因子**:历史IC 0.020,2025年IC 0.009,历史e^(-rank mae) 0.317,2025年e^(-rank mae) 0.318,9月多空收益-0.48%,2025YTD多空收益3.59%,2025年月胜率5/9,9月多头超额0.80%,2025YTD多头超额3.67%[9] **10 大单推动涨幅因子**:历史IC 0.016,2025年IC 0.010,历史e^(-rank mae) 0.322,2025年e^(-rank mae) 0.327,9月多空收益2.23%,2025YTD多空收益7.36%,2025年月胜率7/9,9月多头超额1.19%,2025YTD多头超额3.34%[9] 模型的回测效果 **1 中证500 AI增强宽约束组合**:上周超额收益-1.36%,9月超额收益-3.85%,2025YTD超额收益0.94%,2025年周胜率23/39[13] **2 中证500 AI增强严约束组合**:上周超额收益-1.35%,9月超额收益-1.33%,2025YTD超额收益3.70%,2025年周胜率24/39[13] **3 中证1000 AI增强宽约束组合**:上周超额收益0.40%,9月超额收益0.42%,2025YTD超额收益9.15%,2025年周胜率26/39[13] **4 中证1000 AI增强严约束组合**:上周超额收益-0.19%,9月超额收益0.67%,2025YTD超额收益14.01%,2025年周胜率25/39[13]
高频选股因子周报:高频因子上周表现分化,日内收益与尾盘占比因子强势。深度学习因子依然稳健, AI 增强组合上周表现有所分化。-20250629
国泰海通证券· 2025-06-29 19:24
量化因子与构建方式 1. **因子名称:日内高频偏度因子** - 构建思路:衡量股票日内收益分布的偏度特征[4] - 具体构建过程:参考专题报告《选股因子系列研究(十九)——高频因子之股票收益分布特征》,对常规因子进行正交化处理[10] 2. **因子名称:日内下行波动占比因子** - 构建思路:分解已实现波动中的下行波动部分占比[4] - 具体构建过程:参考《选股因子系列研究(二十五)——高频因子之已实现波动分解》[14] 3. **因子名称:开盘后买入意愿占比因子** - 构建思路:捕捉开盘后市场买入意愿的占比特征[4] - 具体构建过程:基于高频数据低频化方法,参考《选股因子系列研究(六十四)》[17] 4. **因子名称:开盘后买入意愿强度因子** - 构建思路:量化开盘后买入意愿的强度[4] - 具体构建过程:同开盘后买入意愿占比因子,但侧重强度计算[21] 5. **因子名称:开盘后大单净买入占比因子** - 构建思路:分析开盘后大单净买入的占比[4] - 具体构建过程:未披露详细公式,但需正交化处理[25] 6. **因子名称:改进反转因子** - 构建思路:优化传统反转因子的计算逻辑[4] - 具体构建过程:未披露具体公式[36] 7. **因子名称:尾盘成交占比因子** - 构建思路:衡量尾盘成交量在总成交中的占比[4] - 具体构建过程:未披露详细公式[37] 8. **因子名称:深度学习因子(改进GRU(50,2)+NN(10))** - 构建思路:结合GRU神经网络与全连接层预测收益[4] - 具体构建过程:使用GRU(50,2)提取时序特征,NN(10)输出预测值[52] 9. **因子名称:多颗粒度模型(5日标签)** - 构建思路:基于双向AGRU训练多时间颗粒度标签[57] - 具体构建过程:采用5日收益标签训练模型[60] 10. **因子名称:多颗粒度模型(10日标签)** - 构建思路:同5日标签模型,但标签周期延长至10日[60] 因子回测效果 1. **日内高频偏度因子** - 上周多空收益:-0.51% - 6月多空收益:1.48% - 2025年多空收益:14.73%[4] 2. **日内下行波动占比因子** - 上周多空收益:-0.04% - 6月多空收益:1.86% - 2025年多空收益:12.84%[4] 3. **开盘后买入意愿占比因子** - 上周多空收益:0.77% - 6月多空收益:1.85% - 2025年多空收益:11.44%[4] 4. **改进GRU(50,2)+NN(10)因子** - 上周多空收益:0.70% - 6月多空收益:3.58% - 2025年多空收益:19.78%[4] 5. **多颗粒度模型(5日标签)** - 上周多空收益:1.56% - 6月多空收益:5.97% - 2025年多空收益:35.45%[4] 量化模型与构建方式 1. **模型名称:中证500 AI增强宽约束组合** - 构建思路:基于多颗粒度模型因子,最大化预期收益[61] - 具体构建过程:目标函数为$$ \max \sum w_i \mu_i $$,其中$w_i$为权重,$\mu_i$为预期超额收益[67] - 约束条件:个股权重≤1%,行业偏离≤1%,市值暴露≤0.3[62] 2. **模型名称:中证1000 AI增强严约束组合** - 构建思路:同中证500模型,但约束更严格[61] - 具体构建过程:增加ROE、SUE等基本面约束[62] 模型回测效果 1. **中证500 AI增强宽约束组合** - 上周超额收益:-0.25% - 6月超额收益:-0.36% - 2025年超额收益:7.95%[10] 2. **中证1000 AI增强严约束组合** - 上周超额收益:-0.21% - 6月超额收益:0.60% - 2025年超额收益:12.99%[10]