面向量产的端到端实战小班课
搜索文档
端到端落地中可以参考的七个Project
自动驾驶之心· 2025-12-19 08:05
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 导航信息、强化学习、扩散模型、自回归、时空联合规划兜底是当下端到端落地中最重要的技术栈。 近期和业内一位招聘朋友聊了聊,他们反馈 头部玩家已经验 证了端到端走的通,其他车企也开始铺 人力和资源跟进。但候选人往往只懂一部分,具体的量产经验如导航信息的引入、强化学习调优、轨迹的建模及优化都有很 多门道,都是实际的落地痛点。 为此我们花了三个月的时间设计了端到端量产进阶课程,七个项目从实战到落地层层展开。 该课程涉及的核心算法包括:一段式端到端、两段式端到端、导航信息的量产应用、开闭环强化学习、扩散模型+强化学习、自回归+强化学习、时空联合规划等 等,最后分享一些实际的量产经验。这门课程是自动驾驶之心联合工业界算法专家开设的《面向量产的端到端实战小班课》!课程只有一个重点:聚焦量产。从一 段式、两段式、强化学习、导航应用、轨迹优化、兜底方案再到具体量产经验分享。面向就业直击落地,所以这门课程目前不打算大规模招生, 仅剩「20名」招生 名额...... 讲师介绍 王路, C9本科+QS50 PhD,已发表CCF-A和 ...
端到端岗位求职:核心算法&实战讲解(7个project)
自动驾驶之心· 2025-12-08 08:02
行业招聘与技能需求变化 - 自动驾驶行业招聘需求正发生变化,两年前热门的感知岗位需求进一步收缩 [2] - 当前行业需求较高的方向集中在端到端、VLA(视觉语言动作模型)、世界模型等领域 [2] - 头部玩家已验证端到端技术路径可行,其他车企正跟进投入模型、场景、数据优化及规划兜底等方面的人力和资源 [2] - 市场面临人才技能与岗位需求不匹配的挑战,相关岗位技术栈广泛,但候选人往往只精通部分领域 [2] - 具体的量产经验,如导航信息引入、强化学习调优、轨迹建模与优化等,是实际落地中的关键痛点 [2] 课程核心内容与结构 - 课程名称为《面向量产的端到端实战小班课》,核心重点是聚焦量产应用 [2] - 课程设计历时三个月,内容从实战到落地层层展开 [2] - 课程涵盖核心算法包括:一段式端到端、两段式端到端、导航信息的量产应用、开闭环强化学习、扩散模型+强化学习、自回归+强化学习、时空联合规划等 [2] - 课程最终会分享实际的量产经验 [2] - 课程采用小班教学模式,仅剩20个招生名额 [2][4] - 课程面向进阶学员,建议具备自动驾驶BEV感知、视觉Transformer、端到端算法、强化学习、扩散模型理论基础,以及Python、PyTorch、mmdet3d框架等技能基础 [16] - 课程为离线视频教学,辅以VIP群答疑和三次线上答疑,开课时间为11月30日,预计三个月结课 [15][17] 技术发展趋势与课程章节详解 - **端到端任务概述**:在端到端时代,感知任务合并与规控算法学习化已成为绝对主流,如何高效合并感知任务及设计学习化规控模块是行业核心技能 [7] - **两段式端到端算法**:章节介绍两段式框架的建模方式、感知与规划控制的信息传递,分析其优缺点,并通过PLUTO算法进行实战讲解 [8] - **一段式端到端算法**:一段式框架可实现信息无损传递,性能上优于两段式方案,章节将学习基于VLA、扩散模型等多种方案,并以VAD系列进行深入教学 [9] - **导航信息的量产应用**:导航信息在自动驾驶中起引导、选路、选道作用,章节介绍主流导航地图格式、内容及其在端到端模型中的编码与嵌入方式 [10] - **自动驾驶中的强化学习算法**:纯模仿学习存在局限,需结合强化学习以学习因果关系并实现泛化,章节重点介绍强化学习算法及其训练策略 [11] - **端到端轨迹输出优化**:章节进行NN Planner项目实战,涵盖基于模仿学习的扩散模型与自回归算法,以及在监督微调后结合强化学习的实战 [12] - **兜底方案-时空联合规划**:为应对模型输出非100%准确,量产需轨迹平滑优化等后处理兜底逻辑,章节介绍多模态轨迹打分搜索及轨迹平滑算法 [13] - **端到端量产经验分享**:最终章节从数据、模型、场景、规则等多视角分享量产经验,剖析如何选用合适工具与策略以提升系统能力边界 [14] 讲师背景 - 讲师王路拥有C9本科和QS50高校博士学位,已发表若干CCF-A和CCF-B论文 [4] - 现任国内顶级Tier1供应商算法专家,从事大模型、世界模型等前沿算法的预研与量产工作 [4] - 所研发算法已成功落地并量产,拥有丰富的端到端算法研发和实战经验 [4]
即将开课!面向量产的端到端小班课,上岸高阶算法岗位~
自动驾驶之心· 2025-11-27 08:04
课程核心定位 - 课程聚焦于自动驾驶领域端到端技术的量产化实战应用,旨在解决行业量产人才稀缺的问题 [1] - 课程设计历时三个月,内容涵盖从模型优化、场景优化、数据优化到下游规划兜底的全栈技能 [1] - 课程由自动驾驶之心联合工业界算法专家开设,重点为面向就业直击落地,目前仅剩35个招生名额 [3][5] 核心算法与技术内容 - 课程涉及的核心算法包括一段式端到端、两段式端到端、导航信息的量产应用、开闭环强化学习等 [3] - 技术组合涵盖扩散模型+强化学习、自回归+强化学习、时空联合规划等前沿方法 [3] - 课程最后将分享实际的量产经验,帮助学员构建完整的量产优化知识体系 [3] 讲师背景 - 讲师王路拥有C9本科和QS50 PhD学历,已发表多篇CCF-A和CCF-B论文 [6] - 现任国内顶级tier1公司算法专家,从事大模型、世界模型等前沿算法的预研和量产工作 [6] - 所研发算法已成功落地并量产,拥有丰富的端到端算法研发和实战经验 [6] 课程大纲详解 - 第一章介绍主流感知模型一体化架构和经典规控learning化方案,以及开源数据集和评测方式 [9] - 第二章讲解两段式端到端算法框架,包括建模方式、感知与PNC信息传递,并通过PLUTO算法实战 [10] - 第三章深入一段式端到端框架,涵盖基于VLA和diffusion的方法,重点学习VAD系列 [11] - 第四章专注导航信息的量产应用,包括导航地图格式、编码嵌入方式及能力发挥 [12] - 第五章从模仿学习过渡到强化学习,重点介绍RL算法及其训练策略以解决corner-case场景 [13] - 第六章进行nn planner项目实战,结合模仿学习与强化学习,重点讲解扩散模型和自回归算法 [14] - 第七章介绍时空联合规划等轨迹平滑优化算法,作为模型直出的兜底方案确保轨迹稳定可靠 [15] - 第八章从数据、模型、场景、规则多视角分享量产经验,提升系统能力边界 [16] 课程安排与学员要求 - 课程于11月30日开课,预计三个月结课,采用离线视频教学加VIP群答疑模式 [17] - 学员需自备GPU,推荐算力在4090及以上,并具备BEV感知、视觉Transformer等算法基础 [18] - 要求掌握强化学习、扩散模型理论基础,熟悉Python、PyTorch及mmdet3d算法框架 [18] - 需要一定的高等数学、线性代数和矩阵论基础,课程按周解锁章节,持续至次年2月底 [19]
端到端量产这件「小事」,做过的人才知道有多痛
自动驾驶之心· 2025-11-24 08:03
行业人才供需现状 - 端到端技术是当前汽车行业量产的核心关键词,成为各家车企的重点招聘岗位 [1] - 市场上真正的端到端量产人才极为稀缺,该岗位要求具备从模型优化、场景优化、数据优化到下游规划兜底的全栈能力 [1] - 行业出现人才供需失衡现象:一方面求职者面临巨大就业压力,另一方面企业难以招到合适人才 [1] 技术挑战与课程设计背景 - 端到端技术在工业界量产仍需攻克诸多难题,包括导航信息的引入、强化学习调优、轨迹的建模及优化等 [3] - 为应对行业实际需求,专门设计了为期三个月的端到端量产进阶课程,聚焦从实战到落地的全过程 [3] 课程核心内容体系 - 课程涵盖核心算法包括:一段式端到端、两段式端到端、导航信息的量产应用、开闭环强化学习、扩散模型+强化学习、自回归+强化学习、时空联合规划等 [5] - 第一章重点介绍感知模型一体化架构和规控learning化方案,这是各大公司的核心必备技能 [10] - 第二章深入讲解两段式端到端算法框架,包括建模方式、信息传递机制以及PLUTO算法实战 [11] - 第三章分析一段式端到端框架,探讨基于VLA和diffusion等方法,并通过VAD系列进行深入掌握 [12] - 第四章专门研究导航信息在量产中的应用,包括地图格式、编码与嵌入方式 [13] - 第五章从模仿学习过渡到强化学习,重点介绍RL算法及其训练策略以解决corner-case场景泛化问题 [14] - 第六章进行nn planner项目实战,结合模仿学习与强化学习算法 [15] - 第七章讲解量产兜底方案,包括轨迹平滑优化算法和多模态轨迹打分搜索算法 [16] - 第八章分享实际量产经验,从数据、模型、场景、规则等多视角剖析问题解决策略 [17] 课程实施与招生信息 - 课程采用离线视频教学结合VIP群答疑模式,包含三次线上答疑,总时长三个月 [20] - 课程从11月30日开始按周解锁章节,具体安排为:11月30日第一章、12月7日第二章、12月14日第三章、12月21日第四章、12月30日、1月15日、2月10日、2月24日均为第五章 [20] - 课程仅限35个招生名额,采取小班授课模式 [5][23]
工业界算法专家带队!面向落地的端到端自动驾驶小班课
自动驾驶之心· 2025-11-21 08:04
端到端自动驾驶技术行业需求与挑战 - 端到端技术已成为车企量产核心招聘岗位 但市场上面向量产的真正人才极为稀缺[1] - 端到端岗位要求全栈能力 涵盖模型优化 场景优化 数据优化以及下游规划兜底等多个环节[1] - 行业当前需攻克导航信息引入 强化学习调优 轨迹建模与优化等量产一线难题[3] 端到端量产课程核心内容 - 课程设计历时三个月 聚焦从实战到落地的进阶内容[3] - 核心算法覆盖一段式端到端 两段式端到端 导航信息量产应用 开闭环强化学习 扩散模型+强化学习 自回归+强化学习 时空联合规划等[5] - 课程重点在于面向就业与直击落地 仅开放35个招生名额[5] 课程详细大纲 - 第一章:介绍感知模型一体化架构与规控学习化方案 分析任务合并与模块设计[10] - 第二章:讲解两段式框架建模 感知与PNC信息传递 优缺点 并以PLUTO算法实战[11] - 第三章:分析一段式框架优势 学习VLA VAD等基于diffusion的方法 实现信息无损传递[12] - 第四章:解析导航地图格式 内容 及其在端到端模型中的编码与嵌入方式[13] - 第五章:从模仿学习过渡到强化学习 讲解RL算法及训练策略以解决场景泛化问题[14] - 第六章:进行nn planner项目实战 结合模仿学习与强化学习 涵盖扩散模型与自回归算法[15] - 第七章:介绍时空联合规划等轨迹平滑优化算法 作为模型输出不准时的兜底方案[16] - 第八章:分享数据 模型 场景 规则等多视角的量产经验 提升系统能力边界[17] 课程师资与安排 - 讲师王路拥有C9本科及QS50 PhD背景 发表多篇CCF-A/B论文 现任国内顶级Tier1算法专家 具备大模型 世界模型等前沿算法预研与量产经验[6] - 课程面向具备BEV感知 视觉Transformer 强化学习 扩散模型 Python/PyTorch等基础的进阶学员 需自备4090及以上算力GPU[18][19] - 课程采用离线视频教学 辅以VIP群答疑及三次线上答疑 自11月30日开课 预计三个月结课 按周解锁各章节内容[20]