Workflow
指数择时
icon
搜索文档
指数择时多空互现,后市或中性震荡
华创证券· 2025-09-14 15:33
量化模型与构建方式 1. 成交量模型 - 模型构建思路:基于市场成交量数据判断市场短期走势[8] - 模型具体构建过程:通过分析宽基指数的成交量变化情况,设定阈值判断市场中性信号[11] - 模型评价:短期有效的市场情绪指标 2. 低波动率模型 - 模型构建思路:利用市场波动率指标进行择时判断[11] - 模型具体构建过程:计算市场波动率指标,设定中性信号阈值[11] - 模型评价:风险控制型择时模型 3. 特征龙虎榜机构模型 - 模型构建思路:基于龙虎榜机构数据构建特征指标[11] - 模型具体构建过程:分析机构资金流向和交易行为,生成看多信号[11] - 模型评价:反映机构投资者情绪 4. 特征成交量模型 - 模型构建思路:构建特殊的成交量特征指标[11] - 模型具体构建过程:通过成交量异常变化模式识别,生成看空信号[11] - 模型评价:捕捉市场异常交易行为 5. 智能算法沪深300模型 - 模型构建思路:应用智能算法对沪深300指数进行择时[11] - 模型具体构建过程:采用机器学习算法分析多维度市场数据,输出中性信号[11] - 模型评价:基于人工智能的量化择时模型 6. 智能算法中证500模型 - 模型构建思路:应用智能算法对中证500指数进行择时[11] - 模型具体构建过程:采用机器学习算法分析多维度市场数据,输出看空信号[11] - 模型评价:基于人工智能的量化择时模型 7. 涨跌停模型 - 模型构建思路:通过涨跌停板数量分析市场情绪[12] - 模型具体构建过程:统计市场涨跌停股票数量及比例,判断中性信号[12] - 模型评价:反映市场极端情绪 8. 月历效应模型 - 模型构建思路:基于历史月历效应进行择时[12] - 模型具体构建过程:分析历史月份效应规律,输出中性信号[12] - 模型评价:基于季节性效应的择时模型 9. 长期动量模型 - 模型构建思路:利用长期动量效应进行市场判断[13] - 模型具体构建过程:计算长期价格动量指标,生成看多信号[13] - 模型评价:捕捉长期趋势的动量模型 10. A股综合兵器V3模型 - 模型构建思路:综合多因子进行市场综合判断[14] - 模型具体构建过程:整合多个择时模型信号,输出看空结论[14] - 模型评价:多因子综合择时体系 11. A股综合国证2000模型 - 模型构建思路:针对国证2000指数的综合择时模型[14] - 模型具体构建过程:结合多种技术指标,输出看空信号[14] - 模型评价:小盘股综合择时模型 12. 成交额倒波幅模型 - 模型构建思路:通过成交额与波动率关系进行港股择时[15] - 模型具体构建过程:分析成交额与波动率的倒置关系,生成看多信号[15] - 模型评价:港股市场特色择时指标 模型的回测效果 1. 成交量模型 - 信号状态:中性[11] - 覆盖指数:所有宽基指数[11] 2. 低波动率模型 - 信号状态:中性[11] 3. 特征龙虎榜机构模型 - 信号状态:看多[11] 4. 特征成交量模型 - 信号状态:看空[11] 5. 智能算法沪深300模型 - 信号状态:中性[11] 6. 智能算法中证500模型 - 信号状态:看空[11] 7. 涨跌停模型 - 信号状态:中性[12] 8. 月历效应模型 - 信号状态:中性[12] 9. 长期动量模型 - 信号状态:看多[13] 10. A股综合兵器V3模型 - 信号状态:看空[14] 11. A股综合国证2000模型 - 信号状态:看空[14] 12. 成交额倒波幅模型 - 信号状态:看多[15] 量化因子与构建方式 1. 形态学因子(杯柄形态) - 因子构建思路:基于技术分析中的杯柄形态识别[42] - 因子具体构建过程:识别价格走势中的杯柄形态模式,A点为起点,B点为杯底,C点为柄部突破点[46] - 因子评价:经典的技术分析形态因子 2. 形态学因子(双底形态) - 因子构建思路:基于技术分析中的双底形态识别[42] - 因子具体构建过程:识别W底形态,A点为左底,B点为中间高点,C点为右底突破点[50] - 因子评价:反转形态技术因子 3. 形态学因子(倒杯子形态) - 因子构建思路:基于技术分析中的倒杯子形态识别[59] - 因子具体构建过程:识别倒置的杯柄形态,A点为起点,C点为杯顶,E点为向下突破点[60] - 因子评价:负面技术形态预警因子 因子的回测效果 1. 杯柄形态因子 - 本周收益:-3.4%[42] - 相对上证综指超额收益:-2.22%[42] - 累计收益(2020年12月31日至今):57.8%[42] - 相对上证综指累计超额收益:48.02%[42] 2. 双底形态因子 - 本周收益:1.94%[42] - 相对上证综指超额收益:0.41%[42] - 累计收益(2020年12月31日至今):48.04%[42] - 相对上证综指累计超额收益:36.6%[42]
如何基于个股股价跳跃行为做择时?
招商证券· 2025-06-03 23:36
量化模型与构建方式 1. 跳跃不平衡指标模型 1.1 模型名称:跳跃不平衡指标模型 **模型构建思路**:通过识别个股股价跳跃行为,构建衡量股票价格向上跳跃与向下跳跃力量差的指标,用于指数择时[1][2] **模型具体构建过程**: 1. 使用Jiang and Oomen(2008)的跳跃统计量识别股价跳跃: $$JS=N\frac{\hat{V}_{(0,1)}}{\sqrt{\hat{\Omega}_{SW}}}(1-\frac{RV_{N}}{SWV_{N}})\sim N(0,1)$$ $$RV_{N}=\sum_{k=1}^{N}r_{k}^{2}\;;\;SW_{N}=2\sum_{k=1}^{N}(R_{k}-r_{k})$$ $$\hat{V}_{(0,1)}=\frac{1}{\mu_{1}^{2}}\sum_{k=1}^{N-1}|r_{k+1}||r_{k}|$$ $$\mu_{p}=2^{p/2}\,\Gamma\left(\frac{p+1}{2}\right)/\sqrt{\pi}$$[9] 2. 构建三种跳跃不平衡指标: - 跳跃不平衡指标: $$D_{i,t}^{N J}=\frac{\mathrm{No.of~Pjumps}_{i}^{d}\mathrm{\-~No.of~Njumps}_{i}^{d}}{\mathrm{No.of~Tjumps}_{i}^{d}}$$ - 跳跃数量不平衡指标: $$J D_{i,t}^{N J}={\frac{\mathrm{No.of~Pjumps}_{i}\,\mathrm{-~No.of~Njumps}_{i}}{\mathrm{No.of~Tjumps}_{i}}}$$ - 跳跃幅度不平衡指标: $$J R_{i,t}^{N J}={\frac{\mathrm{R.of~Pijumps}_{i}\ -\ R.\mathrm{of~Njumps}_{i}}{R.\mathrm{of~Tijumps}_{i}}}$$[15] 3. 计算指数层面跳跃不平衡指标变化值∆D、∆JD和∆JR[16] **模型评价**:跳跃不平衡指标对指数未来收益有一定预测能力,但解释能力不算高[17] 1.2 模型名称:隐含/暴露跳跃不平衡指标模型 **模型构建思路**:将个股跳跃分为受市场跳跃影响的暴露跳跃和不受市场跳跃影响的隐含跳跃,分别构建不平衡指标[23] **模型具体构建过程**: 1. 暴露跳跃不平衡指标: $$D_{i,t}^{EJ}=\frac{\text{No.of Pjumps}_{i}|\text{Market Jump-No.of Njumps}_{i}|\text{Market Jump}}{\text{No.of Tjumps}_{i}|\text{Market Jump}}$$ 2. 隐含跳跃不平衡指标: $$D_{i,t}^{IJ}=\frac{\text{No.of Pumps}_{i}|\text{No Market Jump-No.of Numps}_{i}|\text{No Market Jump}}{\text{No.of Tumps}_{i}|\text{No Market Jump}}$$ 3. 同样构建数量不平衡和幅度不平衡指标[27] 4. 计算指数层面指标变化值∆D、∆JD和∆JR[28] **模型评价**: - 隐含跳跃不平衡指标与未来指数收益正相关,可能反映市场参与者预期 - 暴露跳跃不平衡指标与未来指数收益负相关,可能反映市场情绪过热[28] 1.3 模型名称:跳跃不平衡离散度指标模型 **模型构建思路**:通过个股隐含跳跃不平衡指标的标准差衡量市场跳跃不平衡离散度,反映市场情绪分化程度[38] **模型具体构建过程**: 1. 计算个股当月的隐含跳跃不平衡指标标准差_ 2. 计算变化值∆_ 3. 当离散度收敛(∆_<0)时看多市场[39] **模型评价**:离散度指标能有效反映市场情绪分化程度,对指数择时有较好效果[39] 1.4 模型名称:复合指标择时模型 **模型构建思路**:结合隐含跳跃幅度不平衡指标和跳跃不平衡离散度指标构建复合择时模型[42] **模型具体构建过程**: 1. 当∆JR>0且∆JR_Std<0时持有上证指数 2. 当∆JR<0且∆JR_Std>0时空仓 3. 其他情况空仓[42] **模型评价**:复合指标择时效果显著优于单一指标[42] 2. 成长-价值风格轮动模型 2.1 模型名称:国证成长指数择时模型 **模型构建思路**:将跳跃不平衡指标应用于国证成长指数择时[51] **模型具体构建过程**: 1. 识别国证成长指数股价跳跃 2. 计算成分股隐含跳跃收益等权平均 3. 根据隐含跳跃收益变化值∆JR判断持仓[51] 2.2 模型名称:成长-价值风格轮动模型 **模型构建思路**:基于国证成长指数隐含跳跃收益变化构建成长-价值风格轮动策略[55] **模型具体构建过程**: 1. 当国证成长指数隐含跳跃收益增加超过阈值时持有国证成长指数 2. 当隐含跳跃收益减少超过阈值时空仓 3. 其他情况半仓持有国证价值指数[55] 模型的回测效果 1. 跳跃不平衡指标模型 - ∆JD_NJ模型:年化收益6.23%,夏普比0.57,盈亏比1.46,年化超额4.48%[20] - ∆JR_IJ模型:年化收益9.93%,夏普比0.82,卡玛比0.75,盈亏比2.05,年化超额8.46%[32] - ∆JR_Std_IJ模型:年化收益9.41%,夏普比0.74,卡玛比0.70,盈亏比1.50,年化超额7.91%[39] - 复合指标模型:年化收益16.5%,夏普比1.28,卡玛比2.41,年化超额15.49%[45] 2. 上证综指ETF择时策略 - 年化收益12.10%,夏普比0.89,卡玛比1.49,年化超额9.78%,最大回撤6.32%[47] 3. 国证成长指数择时 - 正向策略:年化收益12.94%,夏普比0.75,卡玛比0.69,盈亏比1.43[54] - 负向策略:年化收益-9.92%,盈亏比1.36[54] 4. 成长-价值风格轮动 - 年化收益11.34%,夏普比0.64,卡玛比0.77,年化超额10.53%[62]