Workflow
新兴市场小盘股
icon
搜索文档
量化如何应对宏观不确定性冲击?——海外量化季度观察2025Q2
申万宏源金工· 2025-06-27 14:24
1 海外量化动态 1.1 关税事件影响下量化对冲基金普遍有明显回撤 - 2025年4月关税事件导致量化对冲基金普遍回撤 文艺复兴 Institutional Equities Fund 规模200亿美元 2024年上涨22.7% 但4月上半月回撤8% 为疫情以来最大冲击 [1] - Man Group趋势跟踪策略回撤超10% 公司要求研究员恢复现场办公以增加人工干预 [1] - Systematica Investments采用趋势跟踪策略 4月上半月回撤20% 管理资产200亿美元 [1] - 法国兴业银行编制的趋势跟踪策略指数显示 截至4月10日此类策略跌幅超10% 美国量化对冲基金在突发事件中表现波动较大 [2] 1.2 AQR开始"拥抱AI" - AQR创始人Cliff Asness承认已"投降"AI 在投资决策中增加AI算法使用 虽存在解释难题但多数时间提供更高回报 [3] - 境内私募量化机构如倍漾量化(Baiont Quant)已全面采用AI算法 构建分钟至小时级别收益预测 团队完全计算机背景 [3] 1.3 德州教师退休基金量化团队集体加入独立资管机构 - 德州教师退休基金TRS量化团队负责人Mohan Balachandran携4名员工加入独立资管机构NISA 此前管理超160亿美元量化策略 [4] 2 海外量化观点 2.1 量化如何应对宏观不确定性冲击 - 贝莱德认为当前不确定性包括目标、政策规模和时间轴三方面 策略中更多使用对冲思想 保持大类资产、股票风格和债券久期中性 [6] - 贝莱德风险因子数量已达上千个 如日本出口因子、内需股因子等 因子构建方式随宏观环境动态调整 在高不确定性环境下收紧多数因子敞口 [7] - 贝莱德信号观察周期从月度升级至小时/分钟级 疫情期间表现证明广数据维度和精确风控比复杂模型更重要 [7] - 贝莱德主打策略为在市场密集交易中捕捉短期反转机会 建议增配宏观对冲类基金 因其与其他策略相关性低(HFRI macro相关性0.51) [8][9] 2.2 桥水:"现代重商主义"的影响 - 桥水认为现代重商主义导致美联储应对经济放缓难度加大 美国资产面临特殊风险 但当前资产价格尚未实质性调整 后续变化蕴含重大机会 [10] - AI可抵消现代重商主义对生产力的抑制 市场预期已极高但实际可能超预期 桥水建议关注潜在资本流动并配置黄金 [11] 2.3 AQR:关注高波动因子、新兴市场小盘投资机会 - AQR研究发现高波动因子(如债务、应收项目、盈利类)长期夏普率更高 方差比率中位数1.4-1.8 建议量化管理人接受并分散化 [12][13] - AQR最看好新兴市场小盘股 因其估值低(本土收入占比72%)、分析师覆盖率低(平均1.3份研报) 能抵御全球政策风险 [16][19] 3 主要量化产品与因子表现跟踪 3.1 因子轮动类产品 - 贝莱德因子轮动ETF和景顺动态多因子ETF今年均跑赢指数 景顺因低波因子暴露表现更优 但超额收益集中在1-4月 [21][24] - 贝莱德因子轮动框架含宏观、因子动量、估值三维度 成长因子择时信号信息比率1.06 2024年下半年转向中等波动 [31][33] 3.2 综合量化产品 - 贝莱德Advantage系列和富达指数增强系列跟踪误差小 贝莱德产品4月表现突出 富达产品3-5月有增强 [34][37] 3.3 机器学习选股 - QRFT在1、4月表现突出 AIEQ回撤较大 [39] 3.4 全天候策略 - 桥水全天候ETF 3月成立后4月回撤但已修复 规模升至2亿美元 [40] 3.5 因子表现跟踪 - 2-4月美国选股因子表现反转 低波因子持续强势 成长因子5月反弹成为最强势因子 [43]
海外量化季度观察:量化如何应对宏观不确定性冲击?
申万宏源证券· 2025-06-17 10:42
量化模型与构建方式 1 模型名称:贝莱德因子轮动模型 模型构建思路:通过宏观经济周期、因子动量、因子估值等多维度信号动态调整因子暴露,以应对不确定性环境[15] 模型具体构建过程: - 经济周期信号:根据GDP、通胀等宏观指标划分经济阶段,对应不同因子偏好(如复苏期侧重价值因子)[40] - 因子动量信号:计算各因子过去12个月滚动收益,超配持续强势因子 - 因子估值信号:采用因子Z-score衡量历史分位数,低估值因子优先配置 - 成长因子择时子模型:额外引入企业盈利指标(如ROE变化率)作为辅助信号 模型评价:在2024年市场集中度提升时通过质量/成长因子暴露获得超额收益,2025年转向中性配置后有效控制回撤[40] 2 模型名称:AQR高波动因子筛选模型 模型构建思路:通过方差比率指标识别长期波动性显著的因子,结合夏普率优选高波动高收益因子[23] 模型具体构建过程: - 计算因子方差比率:$$ VR = \frac{\sigma_{annual}^2}{12 \times \sigma_{monthly}^2} $$ 其中VR>1.5定义为高波动因子(如债务因子VR中位数1.8)[24] - 构建因子夏普率回归方程:验证高VR因子与夏普率正相关性(R²=0.32)[25] - 组合优化:在财务类因子(债务/应收/盈利)上超配,通过多因子分散降低组合波动[24] 量化因子与构建方式 1 因子名称:财务高波动因子组 因子构建思路:筛选财务报表中波动性显著且具备超额收益的指标[23] 因子具体构建过程: - 债务因子:净债务发行额/总资产滚动3年标准差 - 应收因子:应收账款周转率行业偏离值 - 盈利因子:ROIC波动率与同业差值[24] 2 因子名称:新兴市场小盘因子 因子构建思路:捕捉新兴市场小盘股估值洼地与本土化优势[28] 因子具体构建过程: - 市值筛选:选择MSCI新兴市场指数后30%成分股 - 本土化指标:计算公司收入国内占比(新兴小盘股平均72%) - 分析师覆盖调整:剔除近6个月有2份以上研报覆盖的股票[28] 模型的回测效果 1 贝莱德因子轮动模型:年化超额收益8.2%,IR 1.83,最大回撤1.9%(2013年)[40] 2 AQR高波动因子模型:年化夏普率0.7,月度胜率58%[24] 因子的回测效果 1 财务高波动因子组:年度波动率18.6%,5年累计收益142%[24] 2 新兴市场小盘因子:2025年1-5月超额收益9.8%,相对大盘股Beta 0.6[28]