Workflow
生成式对抗网络(GAN)
icon
搜索文档
机器学习因子选股月报(2026年1月)-20251231
西南证券· 2025-12-31 10:04
量化模型与构建方式 1. **模型名称**:GAN_GRU模型[4][13] **模型构建思路**:利用生成式对抗网络(GAN)模型对量价时序特征进行增强处理,再利用门控循环单元(GRU)模型对处理后的时序特征进行编码,最终输出股票的未来收益预测值作为选股因子[4][13] **模型具体构建过程**: * **数据准备**:使用18个量价特征,包括日频特征(如前收盘价、开盘价、收盘价、最高价、最低价、成交量、成交金额、涨跌幅、振幅、换手率、均价)和月频特征(如月成交金额、月涨跌幅、月振幅、月换手率、月收盘最高价、月收盘最低价、月日均换手率)[17][19] * **特征采样**:对每只个股,取过去400天内的18个量价特征,每5个交易日进行一次采样,采样形状为40(天)* 18(特征),用以预测未来20个交易日的累计收益[18] * **数据处理**:每次采样的40天内,每个特征在时序上进行去极值和标准化处理;同时,每个特征在个股层面上进行截面标准化[18] * **GAN特征生成**: * **生成器(G)**:采用LSTM模型,输入原始量价时序特征(形状为(40, 18)),输出增强后的时序特征(形状仍为(40, 18))[33][37] * **判别器(D)**:采用CNN模型,用于区分真实量价特征与生成器生成的特征[33] * **对抗训练**:生成器与判别器交替训练。生成器的目标是让判别器无法区分其生成的特征与真实特征,其损失函数为: $$L_{G}\,=\,-\mathbb{E}_{z\sim P_{z}(z)}[\log(D(G(z)))]$$ 其中,\(z\) 表示随机噪声,\(G(z)\) 表示生成器生成的数据,\(D(G(z))\) 表示判别器判断生成数据为真实数据的概率[24][25] 判别器的目标是准确区分真实数据与生成数据,其损失函数为: $$L_{D}=-\mathbb{E}_{x\sim P_{d a t a}(x)}[\log\!D(x)]-\mathbb{E}_{z\sim P_{z}(z)}[\log(1-D(G(z)))]$$ 其中,\(x\) 表示真实数据,\(D(x)\) 表示判别器对真实数据的输出概率[27] * **GRU收益预测**:将GAN生成器输出的增强特征,输入到一个两层GRU网络(GRU(128, 128))中,后面再接一个多层感知机(MLP(256, 64, 64)),模型最终输出的预测收益(pRet)即为GAN_GRU因子[22] * **模型训练**:采用半年滚动训练方式,训练时间点为每年的6月30日及12月31日,使用过去数据训练模型并用于未来半年的预测[18] * **股票筛选**:选取全市场股票,剔除ST及上市不足半年的股票[18] **模型评价**:该模型结合了GAN的数据增强能力和GRU的时序建模能力,旨在挖掘更深层次的量价时序规律以预测股票收益[4][13] 量化因子与构建方式 1. **因子名称**:GAN_GRU因子[4][13] **因子构建思路**:GAN_GRU模型最终输出的股票未来收益预测值,直接作为选股因子使用[4][13][22] **因子具体构建过程**:如上述模型构建过程所述,经过GAN特征生成和GRU模型预测后,得到每只股票的未来收益预测值(pRet),即为因子值[22]。在因子测试前,会对该因子值进行行业和市值中性化处理,并进行标准化[22] 模型的回测效果 1. GAN_GRU模型(因子)[41][42] * IC均值:0.1119***[41][42] * ICIR(未年化):0.89[42] * 年化收益率:37.40%[42] * 年化波动率:23.39%[42] * 信息比率(IR):1.60[42] * 最大回撤率:27.29%[42] * 年化超额收益率:22.42%[41][42] * 换手率:0.83X[42] * 最新一期IC(截至2025年12月29日):0.0331***[41][42] * 近一年IC均值(截至2025年12月29日):0.0669***[41][42] 因子的回测效果 1. GAN_GRU因子[41][42] * IC均值:0.1119***[41][42] * ICIR(未年化):0.89[42] * 年化收益率:37.40%[42] * 年化波动率:23.39%[42] * 信息比率(IR):1.60[42] * 最大回撤率:27.29%[42] * 年化超额收益率:22.42%[41][42] * 换手率:0.83X[42] * 最新一期IC(截至2025年12月29日):0.0331***[41][42] * 近一年IC均值(截至2025年12月29日):0.0669***[41][42]
UCL强化学习派:汪军与他的学生们
雷峰网· 2025-02-27 18:15
强化学习研究发展 - 强化学习作为AI领域重要分支持续创新,在推荐系统、广告竞价等领域展现应用潜力[2][3] - 汪军团队从信息检索转向强化学习研究,成立RL China培养青年人才,推动国内强化学习发展[4][13][46] - 深度强化学习突破始于2013年DQN算法,结合深度学习处理复杂任务[21] 多智能体强化学习突破 - 多智能体强化学习面临三层黑盒挑战(深度学习、环境交互、多智能体博弈),研究难度大[28] - 温颖开发BiCNet用于星际争霸协同作战,比AlphaStar早两年但受限于资源规模[33][34] - 杨耀东首创平均场论RL算法,处理百万级智能体系统,降低计算复杂度[37][38] 产业应用与商业化探索 - MediaGamma公司探索广告期权交易所、需方平台等商业模式,首次实现强化学习在广告实时交易商用化[16][17] - 华为诺亚方舟实验室合作项目探索5G网络控制、自动驾驶仿真等场景[54] - 决策大模型MAT和DB1验证多模态决策潜力,参数量达十亿级但泛化效果待突破[55][56] 学术生态建设与人才培养 - RL China暑期课覆盖30+讲师,累计十万人次观看,推动国内强化学习教育[49][50][52] - 《动手学强化学习》教材销量超2.5万册,配套代码实践解决教学脱节问题[53] - 汪军学生群体形成学术网络,覆盖北大、上交大、中科院等多所机构研究力量[71] 前沿技术融合与AGI探索 - 强化学习与大模型结合成为新方向,团队研究语言智能体统一语义空间[62] - 杨耀东团队复现RLHF对齐技术,布局具身智能领域灵巧手操作研究[67][68] - 因果世界模型、芯片优化等跨学科研究拓展强化学习边界[64][65]