Workflow
GRU模型
icon
搜索文档
国泰海通|金工:基于GRU、TCN模型的深度学习因子选股效果研究
模型效果比较 - GRU模型效果略优于TCN+GRU和TCN模型[1] - 预测10日收益模型表现优于预测5日收益模型[1] - 深度学习因子与低波动、低流动性因子呈现较高相关性[1] 模型训练细节 - 输入数据包括30日行情、60日行情、30周行情,以及6个特征(高、开、低、收、均价、换手率)[2] - 预测标签为t+1日至t+6日的5日均价涨跌幅和t+1日至t+11日的10日均价涨跌幅[2] - 训练过程采用2017年以来数据,每年训练一个模型供下一年使用,前9年数据为训练集,第10年数据为验证集[2] 单因子选股效果 - 多头组在中小市值股票池(中证1000、中证2000)超额收益更高[2] - 沪深300中因子原始值效果优于市值行业中性化后因子值[2] - 市值行业中性化后因子超额收益减少,说明深度学习因子捕捉到风格轮动和行业轮动规律[2] 复合因子选股效果 - 深度学习因子与反转因子有一定相关性,与分钟高频因子、快照因子和基本面因子相关性较低[3] - 等权加权后的复合因子效果优于单因子[3] - 构建指数增强策略时,控制市值行业无暴露条件下,沪深300增强年化超额11.8%,中证500增强年化超额13.6%,中证1000增强年化超额21.7%,中证2000增强年化超额27.1%[3] 策略表现 - 截至2025年6月30日,沪深300增强本年超额-0.4%,中证500增强本年超额2.7%,中证1000增强本年超额9.9%,中证2000增强本年超额9.3%[3] - 允许市值行业适当暴露后,沪深300增强年化超额8.8%,中证500增强年化超额14.6%,中证1000增强年化超额22.3%,中证2000增强年化超额26.2%[3] - 考虑双边0.3%交易费用后,每年收益减少约3%[3]
行业轮动周报:ETF资金净流入红利流出高位医药,指数与大金融回调有明显托底-20250721
中邮证券· 2025-07-21 18:13
量化模型与构建方式 1. **模型名称:扩散指数行业轮动模型** - **模型构建思路**:基于价格动量原理,通过计算行业扩散指数来捕捉行业趋势,选择趋势向上的行业进行配置[25] - **模型具体构建过程**: 1. 计算各中信一级行业的扩散指数,反映行业价格趋势强度 2. 扩散指数公式: $$ DI_t = \frac{N_{up}}{N_{up} + N_{down}} $$ 其中,\( N_{up} \)为行业成分股中价格上涨的股票数量,\( N_{down} \)为价格下跌的股票数量[26] 3. 选择扩散指数排名前六的行业作为配置标的[26] - **模型评价**:在趋势性行情中表现优异,但在市场反转时可能失效[25] 2. **模型名称:GRU因子行业轮动模型** - **模型构建思路**:基于GRU(门控循环单元)深度学习网络,利用分钟频量价数据生成行业因子,捕捉短期交易信号[33] - **模型具体构建过程**: 1. 输入分钟级行业量价数据(如成交量、收益率等) 2. 通过GRU网络提取时序特征,输出行业因子得分 3. 根据因子得分排名选择前六的行业配置(如银行、交通运输等)[34] - **模型评价**:短周期自适应能力强,但长周期表现不稳定,极端行情可能失效[38] --- 量化因子与构建方式 1. **因子名称:行业扩散指数因子** - **因子构建思路**:通过统计行业内个股价格变动方向的比例,量化行业趋势强度[26] - **因子具体构建过程**: 1. 对每个中信一级行业,计算当日上涨股票数量占比 2. 标准化为0-1区间,1表示全部成分股上涨,0表示全部下跌[26] 2. **因子名称:GRU行业因子** - **因子构建思路**:利用GRU网络从高频量价数据中提取行业动量特征[34] - **因子具体构建过程**: 1. 对行业分钟频数据(如收益率、波动率)进行归一化 2. 输入GRU网络训练,输出因子得分(如银行因子得分为2.68)[34] --- 模型的回测效果 1. **扩散指数行业轮动模型** - 2025年累计超额收益:1.48%[25] - 周度超额收益(2025/7/18):-1.61%[29] - 7月以来超额收益:-1.62%[29] 2. **GRU因子行业轮动模型** - 2025年累计超额收益:-5.75%[33] - 周度超额收益(2025/7/18):-1.27%[36] - 7月以来超额收益:-0.30%[36] --- 因子的回测效果 1. **行业扩散指数因子** - 当前排名前六行业得分:综合金融(1.0)、综合(0.998)、非银行金融(0.996)[26] - 周度环比提升最大行业:消费者服务(+0.224)、食品饮料(+0.208)[28] 2. **GRU行业因子** - 当前排名前六行业得分:银行(2.68)、交通运输(2.42)、有色金属(-0.87)[34] - 周度环比提升最大行业:建材、银行、综合金融[34]
中金:一种结合自注意力机制的GRU模型
中金点睛· 2025-07-15 07:39
时间序列模型的核心架构演进 - 时间序列模型(如LSTM、GRU、Transformer)通过门控机制或自注意力结构解决长期依赖问题,其中GRU通过精简的更新门与重置门提升运算效率,更适合实时预测场景 [1][2] - Transformer通过自注意力机制和位置编码实现序列建模革新,在多维时序数据分析中展现并行化优势,但参数量大易导致过拟合 [2][5] - 公司提出AttentionGRU(Res)模型,结合轻量化自注意力、残差结构和GRU,兼顾序列学习能力与样本外稳定性,全市场年化超额收益超30% [6][40] 时序因子与截面因子的模型表现对比 - 测试159个截面因子和158个时序因子(Alpha158)显示:截面因子单因子表现更优(多头超额11% vs 时序因子1%),但时序因子在RNN/LSTM/GRU模型中样本外表现更佳(ICIR均值1.02,为截面因子模型两倍) [4][21] - 时序因子模型样本外多头超额收益达7.6%,显著高于截面因子模型的1.3%,且时序因子ICIR分布更集中 [4][21] - 时序模型的结构特性(如循环连接、门控机制)与时序因子的动态关联性高度匹配,增强了对历史序列特征的保留能力 [8][9] 时序模型优化方向与效果 - 对GRU的门结构优化(如BiGRU、GLU)提升有限:BiGRU样本外ICIR仅提升0.01,多头超额收益增加2个百分点 [27][28] - Transformer样本内效果显著但样本外过拟合,因其参数量过大;AttentionGRU(Res)通过简化自注意力结构和残差连接,样本外年化超额收益达12.6%,中证1000泛化测试超额10.8% [33][34][46] - 残差结构(Res)改善梯度传递问题,自注意力机制动态聚焦核心时序节点,两者结合使模型参数减少50%仍保持长期依赖捕捉能力 [35][36][38] 关键模型性能数据 - AttentionGRU(Res)在全市场测试中IC均值7.38%、ICIR 1.09,多头超额收益12.64%,最大回撤8.41%,胜率80.21% [41] - 传统GRU模型对比:IC均值6.51%、多头超额7.18%,最大回撤5.36%,显示优化结构显著提升收益稳定性 [34][41] - 中证1000泛化测试中,AttentionGRU(Res)多头超额10.8%,优于Transformer(9.0%)和基础GRU(3.47%) [46][47]
行业轮动周报:融资资金持续大幅净流入医药,GRU行业轮动调出银行-20250616
中邮证券· 2025-06-16 17:37
根据提供的研报内容,以下是量化模型和因子的总结: 量化模型与构建方式 1. **模型名称:扩散指数行业轮动模型** - **模型构建思路**:基于价格动量原理,通过跟踪行业扩散指数来捕捉行业趋势[6][26] - **模型具体构建过程**: 1. 计算各中信一级行业的扩散指数,反映行业价格趋势强度 2. 选择扩散指数排名靠前的行业作为配置标的 3. 每月进行行业轮动调整[26][30] - **模型评价**:在趋势性行情中表现较好,但在市场反转时可能失效[26][36] 2. **模型名称:GRU因子行业轮动模型** - **模型构建思路**:利用GRU神经网络处理分钟频量价数据,捕捉行业短期交易特征[7][32] - **模型具体构建过程**: 1. 使用GRU深度学习网络处理行业量价数据 2. 生成GRU行业因子得分 3. 选择因子得分高的行业进行配置[32][35] - **模型评价**:在短周期表现较好,但对极端行情适应性有限[32][37] 量化因子与构建方式 1. **因子名称:行业扩散指数** - **因子构建思路**:衡量行业价格趋势强度的标准化指标[6][26] - **因子具体构建过程**: 1. 计算行业价格序列的扩散指标 2. 进行标准化处理得到0-1区间的扩散指数[26][27] 2. **因子名称:GRU行业因子** - **因子构建思路**:通过GRU网络提取行业量价特征[7][32] - **因子具体构建过程**: 1. 输入行业分钟频量价数据到GRU网络 2. 输出行业因子得分[32][33] 模型的回测效果 1. **扩散指数行业轮动模型** - 2025年6月超额收益:1.20%[30] - 2025年以来超额收益:-0.44%[26][30] 2. **GRU因子行业轮动模型** - 2025年6月超额收益:0.00%[35] - 2025年以来超额收益:-4.13%[32][35] 因子的回测效果 1. **行业扩散因子** - 最新排名前六行业得分:综合金融(1.0)、非银行金融(0.997)、银行(0.97)[27] - 环比提升最大行业:有色金属(+0.167)、农林牧渔(+0.164)[27][29] 2. **GRU行业因子** - 最新排名前六行业得分:钢铁(2.42)、建筑(1.47)、交通运输(0.85)[33] - 环比提升最大行业:电力设备及新能源、电子、机械[33]
机器学习因子选股月报(2025年5月)-20250430
西南证券· 2025-04-30 16:14
量化模型与构建方式 1. **模型名称**:GAN_GRU模型 - **模型构建思路**:结合生成式对抗网络(GAN)和门控循环单元(GRU)的深度学习模型,用于挖掘量价时序特征并预测股票收益[9][10] - **模型具体构建过程**: 1. **数据预处理**:使用过去400天的18个量价特征(如收盘价、成交量等),每5天采样一次,形成40×18的时序特征矩阵[14] 2. **GAN部分**: - 生成器(LSTM):输入噪声生成模拟量价特征,损失函数为判别器对生成数据的判别概率: $$L_{G}\,=\,-\mathbb{E}_{z\sim P_{z}(z)}[\log(D(G(z))))]$$ [20] - 判别器(CNN):区分真实与生成数据,损失函数为: $$L_{D}=-\mathbb{E}_{x\sim P_{d a t a}(x)}[\log\!D(x)]-\mathbb{E}_{z\sim P_{z}(z)}[\log(1-D(G(z)))]$$ [23] 3. **GRU部分**:将GAN生成的特征输入GRU(128,128)层,接MLP(256,64,64)输出预测收益pRet作为选股因子[18] 4. **训练方式**:半年滚动训练,行业市值中性化处理[14][18] - **模型评价**:通过对抗训练提升特征生成能力,保留时序特性,适配金融数据的高噪声特点[29][33] --- 模型的回测效果 1. **GAN_GRU模型** - **IC均值**:11.73%(全A股,2019-2025)[37] - **ICIR**:0.90[38] - **年化超额收益率**:24.89%[38] - **信息比率(IR)**:1.66[38] - **最大回撤**:27.29%[38] - **最新一期IC**:0.22%(2025年4月)[37] - **行业表现**: - 当期IC最高行业:银行(33.46%)、钢铁(30.85%)[39] - 近一年超额收益最高行业:家用电器(5.56%)、石油石化(5.39%)[41] --- 量化因子与构建方式 1. **因子名称**:GAN_GRU因子 - **因子构建思路**:基于GAN_GRU模型输出的预测收益pRet,经行业市值中性化后作为选股因子[18][37] - **因子具体构建过程**: 1. 输入原始量价时序特征(40天×18维)[14] 2. 通过GAN生成增强特征,GRU编码后输出预测收益[34] 3. 截面标准化并剔除ST股及上市不足半年的股票[14] --- 因子的回测效果 1. **GAN_GRU因子** - **多头组合年化收益**:36.06%[38] - **年化波动率**:23.80%[38] - **换手率**:0.83[38] - **近一年IC均值**:11.44%[37] - **行业多头超额收益**:纺织服饰(6.78%)、基础化工(5.61%)[41] --- 多头组合示例(2025年4月) - **前十个股**:国网英大、海容冷链、陕西能源等[44][46] - **行业排名第一个股**:非银金融(国网英大)、机械设备(海容冷链)[44]