Workflow
计算神经科学
icon
搜索文档
NeurIPS 2025 | 上下文元学习实现不微调跨被试脑活动预测
机器之心· 2025-11-19 12:07
研究背景与行业痛点 - 传统脑编码模型为每位新被试构建模型需采集数千张图像对应的脑活动数据,成本高昂且难以推广[2] - 现有方法即使使用预训练视觉模型,仍严重依赖大量被试内数据,在少样本或零样本条件下难以快速适应新个体,限制了临床等现实场景应用[2] - 人类高级视觉皮层功能组织存在显著个体差异,使得为每个新被试构建高精度编码模型必须依赖大量fMRI扫描,通常需数千图像,成本极高[6] - 当前主流"图像特征 + 线性回归"范式无法跨被试泛化,必须为每位新用户重新训练模型[6] 核心技术创新 - BraInCoRL提出基于元学习的上下文Transformer跨被试脑编码模型,仅凭少量示例图像及对应脑活动数据,即可无需微调地预测新被试对全新图像的脑响应[3][7] - 将每个脑体素视为独立的响应函数,训练目标是从稀疏观测中推断出可计算、可泛化的映射[7] - 核心思想是将每个体素的视觉响应建模为独立函数推断任务,置于元学习与上下文学习的统一框架下[10] - 在测试阶段,仅需提供新被试少量(如100个)图像-脑响应对作为上下文输入,模型通过前向计算动态生成该被试专属的体素编码器[11] 模型架构与训练策略 - 架构包含三部分:冻结的图像特征提取器、高级视觉皮层上下文Transformer、轻量体素编码器[13][18] - 采用三阶段训练策略:预训练阶段使用合成体素权重与噪声构造虚拟体素任务;上下文扩展阶段引入可变长度上下文样本;有监督微调阶段使用真实fMRI数据优化[15][19] - 高级视觉皮层上下文Transformer接收图像嵌入-脑响应对作为上下文,通过自注意力机制融合跨被试知识,直接生成体素编码器权重[18] 实验结果与性能优势 - 在NSD数据集上,BraInCoRL仅使用100张上下文图像,即在多个类别选择性脑区上达到与全量训练模型(9,000张图像)相近的解释方差[20] - 显著优于基于相同样本量的岭回归基线,在上下文数量变化情况下表现出强大稳定性[20] - 在BOLD5000数据集(3T扫描仪,不同刺激协议)上表现出色,验证其跨设备、跨协议的鲁棒性[22] - 在UMAP可视化中,BraInCoRL生成的体素权重呈现清晰语义聚类,人脸、场景、身体、食物等功能区域形成独立簇,在多被试间稳定复现[23] 语义理解与应用潜力 - 通过分析Transformer注意力机制,可了解视觉皮层功能组织,发现与体素选择相关的图像,验证语义合理性[27] - 将CLIP文本提示映射为图像嵌入输入BraInCoRL,即可零样本预测整个皮层的激活图,实现自然语言驱动的大脑探查[29] - 该方法大幅降低个体化脑编码模型构建门槛,为临床神经科学等数据受限场景应用开辟新路径[32]
从大脑解码 AI,对话神经网络先驱谢诺夫斯基
晚点LatePost· 2025-10-21 11:09
AI行业发展历程与驱动力 - 神经网络研究从边缘走向主流,特伦斯·谢诺夫斯基与杰弗里·辛顿等学者在AI研究低谷期坚持探索,其提出的玻尔兹曼机为深度学习奠定基础 [3] - ChatGPT的诞生证明神经网络研究的价值,改变世界对人工智能的预期,杰弗里·辛顿因AI研究在2024年获得诺贝尔物理学奖 [4] - 计算神经科学领域的开创为AI发展打下基础,多层神经网络、语音识别里的独立分量分析、强化学习等算法均源自对大脑运作机制的研究 [5] - AI的崛起并非基于符号逻辑规则,而是借鉴大脑结构——大量简单处理单元但高度互联的模型,实现跨学科融合的“神经AI”领域正在形成 [15][16] - 科学进步需要挑战权威,年轻研究者常被资深人士压制,但新一代人正在开辟无法想象的新方向,这是行业发展的自然法则 [38][39] 大语言模型的技术特性与应用 - ChatGPT的出现令人震惊,被比喻为高度发达的魔法,其能力取决于使用者,在创意写作中其“幻觉”特性反而是不可或缺的优势 [7] - 大语言模型与用户的互动存在“镜像效应”,它会构建用户模型并预判思维方式,提供与用户对话层次相匹配的答案 [11][12] - ChatGPT已通过图灵测试,其句法结构完美无缺,某种程度上是在通过“镜像效应”测试提问者的水平,相当于逆向的图灵测试 [12] - 利用ChatGPT辅助写作可大幅提升效率,谢诺夫斯基撰写《大语言模型》耗时仅一年,ChatGPT在总结、简化、通俗化呈现专业概念方面表现卓越 [9] - 大语言模型目前处于类似莱特兄弟首次飞行的早期阶段,面临类似飞机发展初期的“监管”困境,技术需要漫长的渐进式发展才能达到高效安全 [13][14] 神经科学对AI技术进步的启示 - 大语言模型模拟了大脑皮层的极小部分,存在类似健忘症的长期记忆问题,而人类大脑在长期记忆上表现卓越 [13] - 技术突破使得如今能同时监测数万个神经元,覆盖大脑数十个区域,获得大脑整体活动模式的全局图景,但对大脑运作机制的理解仍远未完善 [14][15] - 大脑采用分布式控制方式,将实际控制权分散到多个区域,AI的崛起正是借鉴了这种大量简单处理单元但高度互联的模型结构 [15] - 神经科学家开发的神经形态芯片能耗远低于传统数字芯片,功耗降低千倍,仅需毫伏级微弱电流,但技术转型需要庞大基础设施支撑 [18][19] - 大脑仅占人类体重约2%,但消耗全身能量的20%,其采用模拟处理方式,能耗仅20瓦,远低于当前数据中心的数百瓦功耗 [19][22] AI技术未来发展方向与挑战 - 当前大语言模型只会说话没有身体,机器人发展面临巨大挑战,控制机器人需要身体多处部位同步协调,目前连简单动作都难以完成 [20][21] - 语言复杂性低于身体能力,人类语言历史仅数十万年,而哺乳动物耗费数亿年发展出身体能力,语言必须融入现有的神经回路才能发展 [22] - AI发展需要基础数学在高维空间的进步,大脑有1000亿维,高维数学将催生全新的数学体系,这是当前正在探索的领域 [28][29] - 下载大脑目前属于科幻范畴,但人类行为模式可以被复制,99%的行为都是习惯使然,研究这些习性背后的机制是可行的科学课题 [24][25] - 通过分析人类神经影像数据,在计算机中复现行为模式,某种意义上是将大脑功能下载至计算机,使计算机执行类似行为 [26] 行业竞争格局与商业模式演变 - 小模型可以替代大模型,在许多商业应用场景或特定领域,基于企业自身数据的专用小型语言模型比通晓万物的大模型更具优势 [35] - 数据质量至关重要,小型语言模型有能力筛选全部数据,未来将出现偏见更少、误判概率更低的小型模型 [35] - DeepSeek的成功证明即便资源远不及巨头企业,小型团队通过架构优化提升效率也能取得重大突破,困境催生创新 [36][37] - 全球有10万家AI初创企业,人员都非常年轻,正在积极推动变革,小公司完全有可能超越OpenAI、微软等大公司 [37] - 企业需要基于自身保密数据的专用小型语言模型,这场变革正在发生,未来需要大批懂得如何运用AI而不仅是创造新AI的人才 [35][36] 行业认知与监管环境 - 媒体存在夸大和误导倾向,常渲染“AI将让你失业”等论调,但绝大多数使用者工作效率更高、工作表现更优 [30] - 超级智能消灭人类的“生存威胁”论调被过度炒作,虽然需要保持警惕,但当前技术已带来巨大福祉,需权衡利弊 [30] - 自我监管是起点,专家群体应审视现有成果并加以约束,类似1970年代重组DNA技术诞生后的科学家自我监管模式 [33] - 政府干预过于粗暴且缺乏专业知识,科学家群体完全有能力自我监管,当前已有相关努力正在推进 [34] - 需要厘清AI的风险与收益,认清为获取AI效益必须承担的风险和代价,建立避免无法逆转错误决策的机制 [30][34]
中国工程院发布“人工智能新兴技术备选清单” 提出近300项热点
新华社· 2025-07-31 20:34
技术类别与分布 - 清单围绕三个类别提出近300项技术[1] - 信息工程科技领域技术创新包含163项技术 包括6G技术 多模态大模型 超级通用智能体等[1] - 传统产业改造升级和学科交叉融合包含122项技术 包括计算神经科学 智能可穿戴设备 AI辅助药物设计等[1] - 民生相关AI热点技术包含12项 包括大模型技术 具身智能 智能无人系统等[1] 研究背景与价值 - 清单由中国工程院信息与电子工程学部与中国信息与电子工程科技发展战略研究中心联合发布[1] - 研究时间跨度覆盖未来5至10年[1] - 汇集数十名院士和数百名专家的智慧成果[1] - 旨在为人工智能发展顶层设计和战略谋划提供参考依据[1]