1000层NAND闪存
搜索文档
NAND,新“混”战
半导体行业观察· 2025-12-11 09:23
行业背景:存储市场进入全面涨价与技术升级周期 - 过去数月,存储市场迎来罕见的全面涨价,无论是通用DRAM还是NAND闪存,从PC、手机到企业级SSD,全线价格都在快速抬升 [2] - AI服务器与高密度存储需求的叠加增长,导致上游产能吃紧、库存转向健康区间,原本低迷的存储周期正在被迅速推高 [2] - 在此背景下,NAND厂商对下一代技术路线的判断愈发关键,任何节点上的领先与落后都将直接放大为未来两三年的成本与性能竞争差距 [3] 技术转折点:混合键合(Hybrid Bonding)成为300层以上NAND的必选项 - 当NAND层数突破300层后,传统的单片制造架构(如PUC)开始遭遇系统性瓶颈,外围电路需承受整个堆叠制程的高温考验,导致晶体管性能退化、良率恶化和可靠性问题 [8] - 混合键合工艺将存储单元晶圆和外围电路晶圆分别制造,然后通过纳米级精度的对准和键合结合在一起,外围电路不再需要承受高温工艺,两者可独立优化,显著缩短生产周期 [8] - 这项技术从“可选项”变成了“必选项”,因为300层是传统PUC架构的一个临界点,超过此层数后良率和可靠性问题变得难以控制 [24] 主要厂商的技术路线与竞争格局 三星电子(Samsung) - 选择了最激进的路线:在追求超高层堆叠的同时,大规模导入混合键合技术,其400多层V10 NAND采用双串堆叠架构结合混合键合外围单元(CoP) [15] - V10 NAND的接口速度达到5.6 GT/s,比V9提升75%,内存密度达到28.2Gbit/mm² [11] - 激进策略带来巨大工艺挑战,V10需要在-60℃至-70℃的超低温环境下进行蚀刻,导致原定2024年底量产的计划推迟至2025年上半年 [15] - 公司计划在2030年开发出1000层NAND闪存 [27] 铠侠(Kioxia)与西部数据(Western Digital) - 选择了更加稳健的推进策略,其CBA(CMOS直接键合阵列)架构于2023年开始应用于218层的第八代BiCS 3D NAND [16] - 近期发布的332层第十代3D闪存,位密度提高了59%,达到29Gbit/mm²,NAND接口速度达到4.8Gb/s,比第八代产品提升33% [5] - 通过结合Toggle DDR6.0接口标准等技术,输入功耗降低10%,输出功耗降低34% [11] - 公司计划到2031年大规模生产层数超过1000层的3D NAND,并设定了在2027年前完成该技术节点研发的激进目标 [16][27] SK海力士(SK Hynix) - 做出了颠覆性决定:在300层NAND节点(V10)提前导入混合键合技术,这原本被业界认为会在400层之后才会启动 [3] - 决策的紧迫性来自竞争对手的压力:三星的400+层威胁、铠侠CBA的量产成功,以及长江存储的工艺积累 [18] - 市场需求是直接推动力,由于企业级SSD需求激增,工厂已接近满负荷运转,公司计划2025年通过V10测试线完成研发,并于2026年初开始全面量产 [18] - 公司计划在2025年将每月4万至6万片12英寸晶圆的产能转换为V9产能 [18] 长江存储(YMTC) - 从2018年就开始将名为Xtacking的混合键合技术应用于64层NAND,起步即采用先进架构的策略让其工艺成熟度一度领跑 [17] - 在全球NAND厂商普遍缩表的2024年选择逆势扩张,加大投入扩充产能,并在架构成熟度、良率控制和成本效益方面形成了独特的竞争优势 [17] 核心驱动因素:为何混合键合在2024-2025年成为焦点 - 企业级SSD需求爆发式增长,AI大模型的崛起是根本推动力,例如OpenAI的GPT-4由近2万亿个参数构建,基于约13万亿个标记进行训练 [20] - 企业级应用对NAND的要求更加苛刻:更高的容量密度、更快的接口速度、更低的功耗、更好的可靠性 [20] - 传统PUC架构在300层以上面临极限,工艺复杂度(如超低温蚀刻)和成本效益问题凸显,迫使行业转向混合键合 [24] - 2024-2025年是关键的产能窗口期,各大厂商需在此期间完成技术升级以抓住市场机遇并保持竞争力 [25] 技术挑战与未来方向:迈向1000层堆叠 - 实现1000层堆叠需要突破深宽比蚀刻技术的极限,通道孔深度可能达到15-20微米,深宽比将冲向100:1甚至200:1 [28] - 需要解决Z轴方向的“极限缩放”问题,通过材料与沉积技术压缩每层厚度,使总高度“可能接近当今200-250层水平” [28] - 必须解决单元间干扰问题,采用气隙(air-gap)技术和电荷陷阱层分离技术(CT splitting)以提高堆叠层数和为未来更高比特密度单元(如PLC)奠定基础 [29] - 混合键合为实现存储阵列层与外围电路层可分离制造、各自采用最优工艺节点打开了空间,未来可能出现多阵列CBA堆叠、异构键合等创新方案 [29] 关键设备与量测技术支撑 - 低温蚀刻(Cryo Etch)是实现高深宽比结构的关键,Lam Research的第三代Cryo 3.0在蚀刻速率上提升约2.5倍,轮廓精度提升两倍 [33] - 东京电子(TEL)的最新低温蚀刻设备可在-70℃下工作,仅需33分钟完成10微米深度的高AR蚀刻 [33] - 红外光散射计量(IRCD)成为量产中主流的非破坏性检测技术,用于测量通道孔内部形貌 [34] - 高着陆能电子束(HE e-beam)系统和X-ray CT技术用于更深结构的缺陷检测和三维重建 [35] - 虚拟量测(virtual metrology)通过大规模模拟优化工艺窗口,加快产品从开发到量产的节奏 [35] - 国产设备厂商如青禾晶元,其62HB系列W2W混合键合设备凭借优于100nm的超高键合精度与强大的翘曲控制能力,提供了关键的国产化解决方案 [36] 行业展望:超越层数竞赛,进入综合优化时代 - 堆叠层数依旧是首要目标之一,但随着混合键合的应用成熟,架构创新(如与HBM对标的HBF)也被提上日程,为AI闪存应用带来新的可能 [38] - 行业在追求极限层数的同时,需解决成本问题,随着层数增加,单位比特的成本下降速度开始放缓 [38] - 未来的NAND发展将是层数、架构、材料、工艺的综合优化,涉及逻辑扩展(增加每单元比特数)、物理扩展(改变单元结构)、性能扩展(提升I/O速度和带宽) [38] - 混合键合以及千层堆叠不仅是技术的竞赛,更是产业智慧的较量,谁能在多个维度找到最优解,谁就能在下一个十年的NAND竞争中占据制高点 [38]