特定领域语言模型
搜索文档
Gartner 2026战略技术趋势:AI原生、多智能体与物理AI引领产业变革
搜狐财经· 2025-11-11 11:39
文章核心观点 - AI正从技术工具全面渗透为业务核心驱动力,呈现出架构师、协调者、哨兵三大主题 [1] - 2026年十大战略技术趋势重点聚焦于八大新兴方向,涵盖AI原生开发、多智能体系统、物理AI等关键领域 [1] AI原生开发平台 - AI原生开发平台是下一代软件工程核心,通过自然语言提示词直接生成完整应用或辅助编写代码,实现“氛围编程” [2] - 市场上已出现一键生成前后端网站的工具及集成AI的IDE开发环境,部分技术公司20%–40%的代码由AI生成 [2] - AI正在重构软件开发本质,其价值更多体现在模块化、标准化任务的自动化上,难以独立完成复杂系统重写 [2] AI超级计算平台 - AI超算平台作为未来算力底座,呈现混合AI算力与算力调度两大特征,以应对模型规模与数据量激增带来的指数级算力需求 [3] - 云端与终端芯片协同工作,NVQLink和CUDA-Q等技术实现量子计算与经典超算的联动,形成跨架构任务调度能力 [3] - 中国企业推出“超节点”技术,通过堆叠AI芯片实现算力聚合,是地缘政治背景下的务实选择 [7] 多智能体系统 - 多智能体系统通过“分而治之”将复杂任务拆解,由不同智能体分工协作再整合结果,解决单智能体可靠性低、成功率随步骤骤减的问题 [8] - 案例包括贝塔斯曼的跨业务内容检索和GitHub上用于股票分析的开源多智能体项目 [8] - 多智能体是AI从“工具”走向“协作者”的关键一步,未来企业AI架构或将出现“智能体中台” [9] 特定领域语言模型 - 企业级AI项目失败率高达95%,核心问题在于通用大模型“不懂业务” [10] - 特定领域语言模型通过行业数据再训练成为解决之道,使AI从“通才”走向“专才” [10] - 企业需投入数据治理与领域训练,否则将陷入“有模型无智能”的局面 [10] 物理AI - 物理AI指能与现实世界交互的AI系统,主要应用于自动驾驶与机器人,技术路径包括VLA模型和“世界模型” [11] - 特斯拉、蔚来等车企正积极布局能理解物理规律、进行预测与规划的“世界模型” [11] - 物理AI是AI与实体经济融合的桥梁,将在制造业、物流、医疗等领域逐步替代重复性劳动 [11] 前置式主动网络安全 - AI驱动的攻击如“氛围黑客攻击”可自动化完成漏洞探测、钓鱼攻击甚至勒索软件生成,降低了黑客门槛 [12] - 前置式主动网络安全系统应运而生,包括预测性威胁情报、自动移动目标防御等技术 [12] - 企业需建立“预测-响应-欺骗”三位一体的主动安全体系,而非依赖静态防御 [14] 数字溯源 - 数字溯源通过建立软件SBOM、模型MLBOM等清单体系,追踪组件来源与安全性,以应对软件供应链攻击 [15] - AI生成内容的水印与标识技术正在逐步标准化 [15] - 中国在AI内容标识方面的法规实践值得行业关注 [16] 地缘回迁 - 地缘政治风险促使企业将数据与应用从全球公有云迁移至本土“主权云”,欧洲企业受影响最深 [17] - 中国早在信创与国产化替代中布局,DeepSeek为适配国产芯片支持特定数据格式,标志中国AI生态逐步闭环 [17] - 中国企业需在自主可控与全球协作之间找到平衡点,避免陷入“技术孤岛” [17] 延续性趋势与重点方向 - “机密计算”通过可信执行环境保护使用中数据,“AI安全平台”防范提示词注入、模型越狱等新型攻击,共同构成AI时代“安全双翼” [18] - 物理AI、AI原生开发平台、特定领域语言模型、多智能体系统是最值得中国企业在未来一年关注的四大重点趋势 [18] - 企业应避免盲目追逐技术热点,聚焦于将AI嵌入业务流程、具备护城河及形成生态协同,在制造业场景中可结合“组合式AI”实现投入与效果平衡 [18]
Gartner2026预测:这十大战略技术趋势,将决定企业未来竞争力
搜狐财经· 2025-11-09 02:56
文章核心观点 - 2026年对技术领导者而言是至关重要的一年,变革、创新与风险将以空前的速度发展[3] - 2026年的各项重要战略技术趋势将密切交织,折射出一个由人工智能(AI)驱动的高度互联化世界的现实图景[3] - 企业机构必须推动负责任的创新、卓越运营和数字信任,这些趋势是促进业务转型的催化剂[3] - 由于下一轮创新浪潮已近在眼前,只有当下采取行动的企业才能应对市场波动和决定未来数十年的行业走向[3] 2026年十大战略技术趋势 AI超级计算平台 - 整合CPU、GPU、AI ASIC、神经系统计算和替代性计算范式,使企业能够统筹复杂工作负载[6] - 系统融合强大的处理器、海量存储、专用硬件及编排软件,可处理机器学习、仿真模拟和分析等领域的数据密集型工作负载[6] - 到2028年,将混合计算范式架构应用于关键业务流程的领先企业将达到40%以上,较当前8%的水平大幅增长[8] - 该技术已在推动医疗、生物技术、金融服务和公共事业等行业的创新[8] 多智能体系统 - 多智能体系统是由多个AI智能体组成的集合,它们通过交互实现复杂的个体或共同目标[8] - 这些智能体既可在单一环境中交付,也可在分布式环境中独立开发部署[8] - 通过使用多智能体系统,企业可实现复杂业务流程的自动化、提升团队技能并开创人类与AI智能体的新协作方式[10] - 采用模块化设计的专业智能体可提升效率、加快交付速度和降低风险[10] 特定领域语言模型 - 特定领域语言模型凭借更高的准确性、更低的成本和更好的合规性填补通用大语言模型的空白[11] - 该模型是在针对特定行业、功能或流程的专用数据上训练或微调的语言模型,能更加精准、可靠且合规地满足特定业务需求[11] - 到2028年,企业使用的生成式AI模型中将有超过半数属于特定领域模型[13] - 基于DSLM的AI代理可解读特定行业的上下文,具有出色的准确性、可解释性和决策合理性[13] AI安全平台 - AI安全平台为第三方及定制AI应用提供统一防护机制,能够进行集中监测、强制执行使用策略并有效防范AI特有风险[13] - 此类平台可帮助CIO有力执行使用政策、监控AI活动并在全AI系统中建立统一防护边界[13] - 到2028年,使用AI安全平台保护AI投资的企业比例将达到50%以上[16] AI原生开发平台 - AI原生开发平台使用GenAI实现空前快速、便捷的软件开发,企业只需维持现有开发人员规模即可开发更多应用[17] - 领先的企业正在组建微型平台团队,在安全和治理框架范围内让非技术领域专家能够自主开发软件[17] - 到2030年,80%的企业将通过AI原生开发平台将大型软件工程团队转变为更小、更敏捷的团队并通过AI赋能这些团队[19] 机密计算 - 机密计算重塑了企业处理敏感数据的方式,工作负载被隔离在基于硬件的可信执行环境中以保持私密性[20] - 这对受监管行业、面临地缘政治与合规风险的跨国公司以及竞争对手间的合作尤为重要[20] - 到2029年,75%以上在非可信基础设施中处理的业务将通过机密计算保障使用安全[22] 物理AI - 物理AI通过赋能具有感知、决策和行动能力的机器与设备,将智能带入到现实世界[23] - 它能为自动化、适应性和安全性至关重要的行业带来可观的收益[23] - 企业需要融合IT、运营与工程知识的新型技术人才,这一转变带来了技能提升与协作机会[25] 前置式主动网络安全 - 随着企业面临的网络、数据及联网系统威胁成倍增长,前置式主动网络安全正成为趋势[26] - 到2030年,前置式主动防御解决方案将占到企业安全支出总额的一半[26] - 该技术的核心在于运用AI驱动的安全运营、程序化阻断与欺骗技术在攻击者行动前实施干预[28] 数字溯源 - 随着企业日益依赖第三方软件、开源代码及AI生成内容,数字溯源验证已成为一项重要的需求[28] - 数字溯源指对软件、数据、媒体及流程的来源、所有权和完整性进行验证的能力[28] - 到2029年,在数字溯源方面投入不足的企业将面临高达数十亿美元的制裁风险[30] 地缘回迁 - 地缘回迁指企业因考虑到地缘政治风险而将数据与应用从全球公有云迁出至主权云、区域云服务商或自有数据中心等本地平台[31] - 将工作负载转移至主权立场更强的服务提供商可帮助CIO加强对数据驻留、合规及治理的控制力[33] - 到2030年,欧洲和中东地区将有超过75%的企业把虚拟工作负载回迁至降低地缘政治风险的解决方案,而2025年的这一比例不足5%[33]
Gartner发布2026年十大战略技术趋势
机器人圈· 2025-10-22 17:57
AI超级计算平台 - AI超级计算平台整合CPU、GPU、AI ASIC、神经系统计算和替代性计算范式,能够统筹复杂工作负载并释放更大性能、效率与创新潜力[8] - 该平台融合强大处理器、海量存储、专用硬件及编排软件,可处理机器学习、仿真模拟和分析等领域的数据密集型工作负载[8] - 到2028年将混合计算范式架构应用于关键业务流程的领先企业将达到40%以上,较当前8%的水平大幅增长[9] 多智能体系统 - 多智能体系统是由多个AI智能体组成的集合,通过交互实现复杂的个体或共同目标[10] - 企业可通过多智能体系统实现复杂业务流程自动化、提升团队技能并开创人类与AI智能体的新协作方式[11] - 采用模块化设计的专业智能体可在各工作流中重复使用成熟解决方案,从而提升效率、加快交付速度和降低风险[11] 特定领域语言模型 - 特定领域语言模型在针对特定行业、功能或流程的专用数据上训练或微调,能更加精准、可靠且合规地满足特定业务需求[11] - 到2028年企业使用的生成式AI模型中将有超过半数属于特定领域模型[13] - 基于DSLM的AI代理可解读特定行业的上下文,即使在陌生场景中也能做出合理决策,具有出色准确性、可解释性和决策合理性[13] AI安全平台 - AI安全平台为第三方及定制AI应用提供统一防护机制,能够进行集中监测、强制执行使用策略并有效防范AI特有风险[13] - 到2028年使用AI安全平台保护AI投资的企业比例将达到50%以上[15] - 此类平台可帮助CIO有力执行使用政策、监控AI活动并在全AI系统中建立统一防护边界[13] AI原生开发平台 - AI原生开发平台使用生成式AI实现快速、便捷的软件开发,使"前沿部署工程师"能协同领域专家开发应用[16] - 到2030年80%的企业将通过AI原生开发平台将大型软件工程团队转变为更小、更敏捷的AI赋能团队[17] - 企业只需维持现有开发人员规模,通过组建微型团队配合AI即可开发更多应用,例如五支两人团队可同时交付五个应用[17] 机密计算 - 机密计算通过基于硬件的可信执行环境隔离工作负载,即使面对基础设施所有者或云提供商也能保持内容与工作负载的私密性[18] - 到2029年75%以上在非可信基础设施中处理的业务将通过机密计算保障使用安全[20] - 该技术对受监管行业、面临地缘政治与合规风险的跨国公司以及竞争对手间的合作尤为重要[18] 物理AI - 物理AI通过赋能具有感知、决策和行动能力的机器与设备,将智能带入到现实世界[21] - 该技术能为自动化、适应性和安全性至关重要的行业带来可观的收益[21] - 企业需要融合IT、运营与工程知识的新型技术人才来应对这一技术变革[23] 前置式主动网络安全 - 前置式主动网络安全运用AI驱动的安全运营、程序化阻断与欺骗技术在攻击者行动前实施干预[24][26] - 到2030年前置式主动防御解决方案将占到企业安全支出总额的一半[24] - 该技术通过预测实现防护,核心在于在攻击发生前进行干预[26] 数字溯源 - 数字溯源指对软件、数据、媒体及流程的来源、所有权和完整性进行验证的能力[26] - 到2029年在数字溯源方面投入不足的企业将面临高达数十亿美元的制裁风险[28] - 企业可使用软件物料清单、认证数据库、数字水印等新工具验证和追踪供应链中的数字资产[26] 地缘回迁 - 地缘回迁指企业因考虑到地缘政治风险而将数据与应用从全球公有云迁出至主权云、区域云服务商或自有数据中心[29] - 到2030年欧洲和中东地区将有超过75%的企业把虚拟工作负载回迁至降低地缘政治风险的解决方案,而2025年的这一比例不足5%[30] - 将工作负载转移至主权立场更强的服务提供商可帮助CIO加强对数据驻留、合规及治理的控制力[30] 技术趋势演进方向 - 2026年趋势显示AI从基础模型转向规模化、专业化和协同化应用,与物理世界的结合更为紧密[33] - 企业安全策略正整体向预防和内生转变,重点关注AI安全平台、数字溯源和前置式网络安全等解决方案[33] - 技术发展重点从构建能力转向安全运营,更加注重落地实施时的安全、信任、合规和运营问题[33]