英伟达H800

搜索文档
华为芯片,让英伟达黄教主坐不住了
21世纪经济报道· 2025-07-07 16:56
核心观点 - 华为昇腾CloudMatrix 384超节点在部分性能上超越英伟达GB200机柜,整体计算能力达后者的1.6倍[1][13] - 昇腾通过集群化设计弥补单芯片性能差距,实现从"备胎"到"主力"的转变,成功训练出千亿参数大模型[3][6][32] - 昇腾在算力利用率(MFU)上达到全球一流水平,稠密模型MFU超50%,MoE模型达41%-45%[9][10] - 昇腾384超节点采用光互联等系统性工程突破,实现384芯片高效协同,技术路径与英伟达差异化[16][21][29] 技术性能对比 - 单芯片性能为英伟达Blackwell的三分之一,但384超节点通过5倍芯片数量实现系统算力反超[13] - 推理性能对标英伟达H100,在DeepSeek-R1模型测试中算力利用率获全场最佳[11] - 英伟达GB200机柜仅集成72块GPU(下一代144块),华为突破384芯片互联技术[19][20] 技术路径创新 - 采用全对等互联架构与光缆连接,传输效率优于英伟达NVLink铜缆方案[27][29] - 结合鲲鹏CPU与昇腾NPU协同优化,实现"数学补物理"的系统级创新[24][32] - 自研CANN软件栈替代CUDA生态,支持分钟级故障恢复等工程优化[32] 行业竞争格局 - 国内AI芯片形成三大派系:科技巨头(华为/百度/阿里)、纯芯片厂商(寒武纪/燧原等)、细分领域企业(地平线等)[36] - 英伟达仍保持3nm工艺领先优势,CUDA生态历史积淀深厚[33][34] - 美国制裁背景下,昇腾在中国市场加速替代英伟达H20受限产品[36][37] 发展前景 - 华为通过"面积换性能"策略开辟中国特色技术曲线,实现弯道超车[38][39] - 昇腾已验证国产芯片训练千亿参数模型能力,标志国产算力进入实用阶段[6][40]
华为芯片,究竟有多牛?(上)
21世纪经济报道· 2025-07-06 11:12
华为昇腾芯片性能突破 - 昇腾384超节点整体计算能力达英伟达GB200机柜的1.6倍 [3][10] - 单芯片性能为英伟达Blackwell三分之一,但通过5倍芯片数量堆叠实现系统算力反超 [10] - 在DeepSeek-R1大模型推理实战中,昇腾算力利用率表现最佳,对标英伟达H100 [10] 昇腾技术进展与成果 - 昇腾910从"备胎"升级为训练千亿参数大模型的主力芯片 [4][6] - 使用8192颗昇腾芯片训练1350亿参数稠密大模型"盘古Ultra",MFU超50% [6][9] - 6000多颗芯片训练7180亿参数MoE大模型,MFU达41%-45% [6][9] 昇腾与英伟达竞争格局 - 昇腾在AI推理环节已广泛应用,模型训练能力2024年后显著提升 [4][5] - 采用集群剑阵策略弥补单卡性能差距,实现系统级性能领先 [2][10] - 海外机构SemiAnalysis确认昇腾系统算力超越英伟达最新产品 [3][10] 国产算力发展现状 - 昇腾成为国产AI芯片标杆,突破制裁限制实现自主训练能力 [4][6] - 技术论文验证国产芯片可支撑千亿级参数大模型训练 [6] - 算力利用率(MFU)指标达到全球一流水平 [9][10]