Workflow
Azure Synapse Analytics
icon
搜索文档
Fortude secures major Solutions Partner achievement with Analytics on Microsoft Azure Specialization
Globenewswire· 2025-09-30 20:31
公司核心动态 - 公司获得微软Azure分析专业化认证,强化了其作为云与人工智能平台解决方案提供商的地位 [1] - 这是公司在过去六个月内获得的第二个微软认证,此前已获得数字和应用创新(Azure)称号 [4] - 此次认证反映了公司与微软之间加速发展的合作关系 [4] 认证的意义与价值 - 该认证有助于公司进一步扩大其为客户创造的价值,使客户能够充分利用其数据资产,构建企业级的变革性安全分析解决方案 [2] - 认证使公司能够进一步差异化其组织,验证其能力,并通过规划交付定制化微软分析解决方案来与客户建立更牢固的联系 [3] - 认证确认了公司在交付基于Azure的项目方面拥有多年的综合经验以及强大的架构师和工程师团队 [3] 认证的获取与标准 - 该认证是在微软委托的全面审计后授予的,审计评估了交付、技能、客户成功和流程,并以经过验证的全球表现为基础 [2] - 合作伙伴需具备活跃的数据与人工智能(Azure)解决方案合作伙伴称号,才能获得此Azure分析专业化认证 [3]
新旧势力再较量,数据库不需要投机 | 企服国际观察
钛媒体APP· 2025-05-08 17:50
生成式AI驱动数据库市场竞争 - 生成式AI技术变革正促使数据库厂商展开激烈竞争,传统厂商因云原生分布式数据库冲击而市场地位动摇 [3] - 企业客户需求推动厂商调整数据战略,更贴近AI实际应用场景,如安克创新采用Databricks云湖仓产品实现200TB数据统一治理 [3][4] - 行业竞争焦点集中在云湖仓技术,涉及表引擎、分析引擎、实时计算引擎等组件,以及大模型自研和AI数据库层面 [4] 数据仓库与数据湖的技术演进 - 数据仓库(Data Warehouse)起源于20世纪60年代,1990年代在Bill Inmon和Ralph Kimball推动下快速发展,核心优势为结构化数据处理和商业智能支持 [6] - 21世纪初大数据兴起暴露传统数仓缺陷,如非结构化数据处理能力不足,谷歌"三驾马车"(GFS/MapReduce/BigTable)奠定大数据技术基石 [7][9] - 数据湖(Data Lake)概念2010年由James Dixon提出,以Hadoop生态解决海量数据存储问题,但存在计算能力不足和实施成本高的局限 [9][10] - 湖仓一体(DLH)概念由Databricks在2020年提出,整合数仓与数据湖优势,成为AI大模型时代关键基础设施 [11][14] 湖仓一体市场格局与主要厂商 - 湖仓市场形成四股势力:传统厂商(Teradata/Cloudera)、云厂商(Google BigQuery/Amazon Redshift)、新贵Snowflake和开源系Databricks [12] - Databricks技术路径以数据湖支持数仓特性,基于Spark/Delta Lake/MLflow构建完整方案,Snowflake则优化结构化数据存储分析 [13][18] - 全球大数据分析市场规模预计2028年达5497.3亿美元,湖仓一体成为最热门领域之一 [13] - 中国市场阿里云、华为云等云厂商及星环科技等创业公司均在布局湖仓技术 [17] Databricks与Snowflake的竞争动态 - Databricks通过收购Tabular(Iceberg商业公司)和MosaicML(13亿美元)强化AI能力,推出132B参数大模型DBRX [19][20][21] - Snowflake发布4800亿参数MoE架构大模型Arctic应对竞争,并与Cloudera/Anthropic等达成合作 [22] - Databricks收入运行率预计2025年超30亿美元,与Snowflake(35亿美元产品营收)差距缩小 [21] - 双方技术路线差异显著:Databricks定位AI基础设施公司,Snowflake侧重数仓易用性和可扩展性 [18][22] 行业技术发展趋势 - 谷歌BigQuery通过嵌入治理功能实现湖仓统一,客户规模达Snowflake/Databricks五倍 [23] - AI RAG技术成为新竞争焦点,Snowflake/Databricks曾竞购VoyageAI但被MongoDB截胡 [25] - 新兴企业如Glean推出数据库搜索产品,Databricks拟收购无服务器公司Neon [26] - 行业共识转向解决实际业务问题而非技术噱头,客户需求聚焦数据见解与决策支持 [27]