Workflow
one two VLA
icon
搜索文档
对话千寻智能高阳:科学家创业不太「靠谱」,但创业就像一场游戏
36氪· 2025-08-08 17:28
具身智能行业趋势 - 具身智能领域正经历技术范式转变,ChatGPT的出现推动了学习范式的革新,使得具身智能成为必然发展方向[13] - 行业现阶段普遍采用Transformer做预训练,但工程化后期效果将出现显著分化[34] - 预计四年后将进入Robot GPT3.5阶段,机器人能完成70%的家庭场景任务[41] 千寻智能商业模式 - 坚持软硬一体化路径,定位为"具身智能领域的苹果"而非安卓[10][11] - 成立19个月累计融资超10亿人民币,资方包括华为哈勃、京东、宁德时代等[7] - 技术路线强调VLA(视觉语言动作)模型创新,独创快慢系统提升动作流畅度[37][46] 技术研发重点 - VLA模型采用95%互联网人类视频数据预训练,显著提升泛化能力[58][61] - 算法创新包括任务分解能力(one two VLA)和动作tokenizer优化[40][45] - 现阶段世界模型仅小规模应用,分层技术路径将被端到端方案淘汰[49][50] 行业竞争格局 - 头部机器人公司仍聚焦硬件和教育市场,忽视"大脑"开发[14] - 同质化Demo现象普遍,叠衣服等复杂任务成为技术能力试金石[56] - "伯克利四子"分别专注不同技术方向:运动控制、操作交互、3D感知等[63][65] 数据策略差异 - 反对现阶段大规模建设数采工厂,认为跨本体数据迁移效率低[53] - 互联网数据价值在于提供多样性,遥操作数据确保物理世界精确性[59] - 数据清洗和配比直接影响模型性能,当前泛化能力提升率达60-80%[61] 人才战略 - 偏好年轻科研人才(硕士/博士),要求具备前沿技术敏感度[71][72] - 算法岗更看重近期学术成果而非工作经验,因技术迭代速度过快[72] - 团队构建强调"少而精",需同时具备研究能力和工程化思维[70]
对话千寻智能高阳:科学家创业不太“靠谱”,但创业就像一场游戏
36氪· 2025-08-08 09:49
公司战略与定位 - 千寻智能采用软硬一体模式,定位为具身智能领域的"苹果"而非"安卓",强调技术初期必须整合硬件与软件能力[5][6] - 公司成立19个月累计融资超10亿人民币,资方包括华为哈勃、京东、宁德时代等头部机构[4] - 创始团队为学术与产业组合:高阳为AI科学家,韩峰涛为硬件专家,曾操盘数万台机器人量产[3][7] 技术路径与创新 - 核心VLA模型采用快慢系统技术,实现动作流畅性(如叠衣服甩动动作),4个月前完成开发[35][36] - 独创one two VLA架构,支持复杂任务自主分解(如"手机放抽屉"需3步骤)[31] - 95%训练数据来自互联网人类视频,提升跨品类泛化能力(如折叠机识别无需额外训练)[46][47] - 现阶段暂未大规模投入世界模型研发,认为强化学习环节成本过高[37] 行业竞争格局 - 判断市场难以容纳第二家软硬一体公司,头部企业倾向固守教育细分市场[9][11] - 反对大规模数采工厂模式,认为机器人形态未定型导致数据迁移价值打折[41][42] - 叠衣服成为行业标准测试场景,因其需应对千变万化的物体形态[44] 技术发展阶段 - 预测4年后进入Robot GPT3.5阶段,任务完成率达70%(如家庭场景取水)[32] - 当前VLA存在语言模块过载问题,需优化数据利用(人类视频预训练)与架构设计[33][34] - 泛化能力仍处初级阶段,但互联网数据可使新物体识别提升60%-80%[48] 人才与研发管理 - 招聘偏好顶尖院校硕士/博士,需发表过机器人领域论文但无需工作经验,因技术迭代过快[52] - 自动驾驶与机器人技术本质相似,差异在于本体成熟度与安全容错标准[53] 产品验证标准 - 提出机器人性能评估方法论:观察跨品类操作(衣物品类切换)、动作流畅度(卡顿检测)、抗干扰能力(衣物团扔测试)[3][25][29]