Workflow
塑料污染
icon
搜索文档
连发三篇论文:蓝晶微生物PHA工业化生产,突破文献最高产量与最低单位成本纪录
生物世界· 2025-05-12 12:15
技术创新与突破 - 公司研发团队联合复旦大学和牛津大学在国际期刊发表两项技术创新成果,包括全球首个基于真实生产数据的PHA全生命周期碳足迹研究[2] - 通过自主开发的Biohybrid技术体系,在PHA工业化生产的单位产量、单位成本控制和碳足迹控制方面达到文献报道最高水平[4] - 油基碳源路线理论质量转化率可达130%,碳源成本下限降低至590美元/吨,较传统糖类碳源路线(57%转化率,825美元/吨)有显著优势[6] - 在补料分批发酵中实现175克/升的PHA单位产量与87%的碳源转化率,验证了油基路线的经济性优势[6] Biohybrid 1.0技术 - 通过激活菌株内沉默的卡尔文循环,在15吨发酵规模中实现260 g/L的PHA单位产量,较初始菌株提升20%[11] - 同位素标记显示PHA前体乙酰辅酶A多达10%碳原子来自于无机碳CO₂,同时显著改善了细胞氧化还原平衡[14] - 在多批次200L中试和15吨量产测试中,卡尔文循环激活菌株显著提升了油脂消耗量、生物量积累、PHA单位产量和碳源转化率[15] Biohybrid 2.0技术 - 在150吨量产规模实现PHA单位产量264g/L、植物油碳源转化率100%的创纪录高产[18] - 通过功能基因组学与合成生物学技术系统优化菌株油脂利用能力,经多批次工艺优化将单位产量提升至300g/L以上,碳源转化率超过100%[18] - 在200L中试阶段通过引入脂酶基因过表达改造,成功将甘油三酯残留量降低,实现稳定运行[22] 碳足迹研究 - 全球首个基于真实生产数据的PHA全生命周期碳足迹研究显示,采用Biohybrid 2.0技术与餐厨废油原料可将PHA碳足迹降至2.01 kg-CO₂e/kg-Polymer,较传统石化塑料降低64%[25] - 使用原始菌株与食品级棕榈油时PHA碳足迹为5.77 kg-CO₂e/kg-Polymer,与传统石化塑料(5.52 kg-CO₂e/kg)基本持平[28] - 餐厨废油路线LCA碳足迹较食品级植物油再降28%,达到2.01 kg-CO₂e/kg-Polymer[28] 产业化进展 - 江苏盐城生产基地已实现Biohybrid 2.0技术的工程化应用,PHA生产成本较2019年文献报道值下降41%,单位产量较同类工业菌株提高83%[30] - 建立了合成生物学理性设计与工业放大的方法论范式,为生物降解材料的大规模替代提供了关键技术支撑[30]
PNAS:陈春英院士团队发现,微塑料可作为碳源进入体内碳循环,干扰代谢和肠道健康
生物世界· 2025-05-12 07:49
微塑料污染与健康风险 - 人类每周微塑料颗粒摄入量在0.1-5克左右,广泛存在于生活环境中[2] - 聚乳酸(PLA)作为生物可降解塑料被大量用于食品包装、一次性餐具和生物医学载体[2] - PLA微塑料比传统石油基塑料产生更多微塑料,可能引发炎症和更大潜在隐患[2] 聚乳酸微塑料的肠道代谢机制 - 结肠微生物通过分泌酯酶FrsA高效降解PLA微塑料,主要依赖鼷鼠螺杆菌和居肠巴恩斯氏菌[4][6] - 降解后产生乳酸小分子,进一步转化为尿酸和D-乳酸等有害副产品,可能引发痛风并阻碍尿酸排泄[6] - PLA微塑料的碳原子被肠道细胞利用合成氨基酸和遗传物质,但导致短链脂肪酸减少,削弱肠道屏障功能[6] 可降解塑料的健康影响 - 长期摄入PLA微塑料导致小鼠食欲减退、体重下降,肠道菌群紊乱且代谢异常持续21天以上[7] - PLA在人体肠道37℃环境下降解效率低,微塑料滞留时间长,可能破坏膳食纤维代谢平衡[10] - PLA微塑料对雄性小鼠生殖系统显示毒性作用,与传统石油基微塑料机制一致[14][17] 行业与社会启示 - 可降解塑料并非完全无害,需重新评估其安全性标准并推动无害材料研发[12][13] - 建议减少一次性塑料制品使用,避免高温食物接触PLA包装,增加膳食纤维摄入以维护肠道健康[12] - 研究首次阐明PLA微塑料在肠道的完整碳循环过程,为评估可降解塑料安全性提供科学依据[13][17]
新研究为海洋塑料污染治理提供新思路
环球网资讯· 2025-04-27 16:01
来源:光明网 光明网讯随着全球海洋微塑料污染持续加剧,开发高效治理技术已成为环境科学领域的重大课题。近 日,中南大学王晖教授团队联合海南大学蒋鸿儒副教授、郑州大学王重庆教授等科研团队,在国际权威 期刊《Chemical Engineering Journal》发表创新性研究成果,成功研发基于微气泡浮选技术的新型治理 方案,为海洋塑料污染治理提供了创新思路。 相较于常规浮选,微气泡浮选凭借小尺寸且高稳定性的微气泡,成为一种颇具潜力的微塑料解决方案。 然而,海洋环境中的复杂界面相互作用是制约该技术应用的关键瓶颈。研究团队通过多尺度界面表征发 现,藻类及其分泌的胞外聚合物会促使微塑料表面发生亲水化转变,这种转变削弱了微塑料与微气泡间 的疏水相互作用,导致常规浮选对海水中微塑料的去除效率显著下降。 研究发现,藻类及其胞外聚合物诱导微塑料表面亲水化,削弱了微塑料与微气泡之间的疏水作用,显著 降低常规浮选对海水中微塑料的去除效果。鉴于藻类胞外聚合物通过调节气液界面上的分子构象,减小 微气泡粒径和增强其稳定性,微气泡能够有效利用亲水微塑料表面残余疏水位点,微气泡浮选对于长期 受藻类污染的亲水微塑料展现出良好的脱除效果。 这 ...