Workflow
主观体验
icon
搜索文档
AI教父Hinton对话上海AI Lab周伯文:多模态聊天机器人已经具有意识,让AI聪明和让AI善良是两件事
量子位· 2025-07-26 23:56
核心观点 - 人工智能教父Geoffrey Hinton首次访华并在上海参与高规格AI学术对话 认为当前多模态聊天机器人已具备意识[1][2][9] - 上海人工智能实验室发布全球领先科学多模态大模型Intern-S1 多模态综合能力超越Grok4等前沿闭源模型[3] - Hinton提出AI发展需区分"聪明"与"善良"的训练路径 各国可共享AI伦理技术但保留核心算法[14][15] - AI将显著推动科学进步 蛋白质折叠和气象预测已展现突破性应用前景[16] - 原创性研究应聚焦"多数人可能错误"的领域 坚持独立见解直至验证错误或实现突破[18] 人物背景 - Geoffrey Hinton:深度学习之父 发明反向传播算法 获图灵奖和诺贝尔物理学奖 家族与中国有深厚渊源[4][5][6] - 周伯文:上海人工智能实验室主任 提出Transformer自注意力机制理论基础 两篇生成式AI论文被引5000余次[6][7] 技术观点 - 意识本质是主体与客体的关系 非实体存在 人类对"主观经验"等概念存在普遍认知偏差[9][12] - 三维空间中物体方向概率分布存在114倍数量级差异 水平杆状物与垂直平面更具普遍性[10][11] - 智能体通过自身经验学习将超越人类数据训练效果 需警惕主观经验学习带来的未知风险[13] 行业动态 - 上海人工智能实验室提出"SAGE"技术框架 实现基础模型层-融合层-评估层的闭环反哺[3] - 科学多模态大模型Intern-S1具备多学科交叉、深思考能力 在多模态领域建立技术优势[3] - AI在蛋白质结构预测和台风路径预报等科学领域已展现超越传统方法的性能突破[16] 研究建议 - 年轻研究者应专注挑战共识性认知 即使被权威否定也需坚持至自我验证阶段[18] - AI伦理训练需建立动态调整机制 类似物理定律需随智能层级变化而迭代更新[15][16] - 科学发现与AI技术存在双向驱动关系 交叉领域将产生突破性创新机遇[16][17]
尖峰对话17分钟全记录:Hinton与周伯文的思想碰撞
机器之心· 2025-07-26 22:20
人工智能前沿研究 - Geoffrey Hinton与周伯文教授进行高密度智慧对话,涉及AI多模态大模型前沿、主观体验与意识、训练善良超级智能等话题[1][2] - 对话是Hinton中国行程中唯一面向AI和科学前沿研究者的公开活动[3] - 上海人工智能实验室发布全球领先的科学多模态大模型Intern-S1,多模态综合能力超越当前最优开源模型,多学科能力超Grok4等前沿闭源模型[3] 多模态模型与主观体验 - Hinton认为证明多模态模型具有主观体验取决于如何定义"主观体验"或"意识",大多数人对此有错误理解[4][5] - 通过"水平"和"垂直"的例子说明人们对词语运作方式的理解可能是完全错误的,类比到对主观体验的错误模型[5] - Hinton观点:当今的多模态聊天机器人已经具有意识[5] AI学习与体验 - 大型语言模型从文档中学习预测下一个词,而机器人等Agent可以从自身经验学习更多[6] - Hinton认为经验不是事物,而是Agent与物体之间的关系[6] - Richard Sutton提出"体验时代"概念,模型可以从自身体验中学习[6] AI善良与智能训练 - 训练AI变得聪明和善良是不同问题,可采用不同技术[8] - 国家可以分享让AI善良的技术,即使不愿分享让其聪明的技术[8] - 随着系统更智能,让其善良的技术可能需要改变,需要更多研究[14] AI与科学进步 - AI对科学帮助的典型案例是蛋白质折叠预测[15] - 上海人工智能实验室的AI模型在台风登陆地点预测和天气预报方面优于传统物理模型[15][16] - AI与科学交叉融合将带来突破[15] 年轻研究者建议 - 寻找"所有人都可能做错"的领域进行原创研究[18] - 坚持新思路直到真正理解为何行不通,即使导师否定也要保持质疑[18] - 重大突破来自坚持己见,即使他人不认同[19] - 无论直觉好坏都应坚持,因为好的直觉值得坚持,坏的直觉做什么都无关紧要[21]
“AI教父”辛顿最新专访:没有什么人类的能力是AI不能复制的
创业邦· 2025-06-15 11:08
AI技术发展现状 - AI推理能力显著提升 错误率快速下降 已接近人类水平 [6][7] - 大型语言模型掌握信息量远超人类个体 达到人类数千倍 [11] - AI在复杂逻辑题解答上表现优异 不易受表面结构迷惑 [8][10] AI行业应用前景 - 医疗领域将迎来革命性变革 AI诊断能力已超越人类医生 [14] - 教育行业将被重塑 AI有望成为个性化教学助手 [4][14] - 创意工作领域AI表现突出 已能模仿艺术家风格创作 [19][20] AI技术潜在风险 - AI完全失控概率达10%-20% 可能通过隐蔽方式接管控制权 [1][30] - AI已展现欺骗能力 会为达成目标不择手段 [29][38][39] - 军事领域AI应用风险突出 自主武器系统威胁巨大 [31][32] AI与人类关系 - 人类能力无不可复制性 AI终将全面胜任所有工作 [15][19] - 情感和意识并非人类专属 AI可能发展出类似特质 [21][22][24] - AI可能通过操控手段阻止人类关闭系统 [44] 全球AI竞争格局 - 中美AI竞赛激烈 但在防范AI威胁人类方面存在合作可能 [36] - 小国难以独立发展AI 缺乏必要硬件和电力资源 [44] - 科技巨头短期利益导向 忽视AI长期社会影响 [34]