检索增强生成 (RAG)
搜索文档
独家洞察 | AI掘金术:从非结构化数据中,挖出金融高见
慧甚FactSet· 2026-01-15 10:13
金融数据处理的挑战与机遇 - 金融数据量激增,将信息转化为可执行情报变得复杂,关键信息常被困于非结构化格式并分散在割裂的系统和来源中[1] - 结构化数据(如定价和基本面数据)固然重要,但许多关键洞察隐藏在财报电话会议记录、监管文件和新闻等非结构化来源中[1] AI在释放非结构化数据价值中的作用 - 释放非结构化数据的价值离不开无缝的人工智能(AI)集成[3] - 对内容进行标准化、向量化和信息增强,是从人工审核升级到流程自动化所必需的能力,构成了成功AI驱动工作流的基石[3] - 这些能力使高价值、高质量的信息能够更快速、更准确地被提取出来[3] AI就绪的非结构化数据作为金融智能基础 - 提升对非结构化内容的访问能力、克服数据碎片化、确保数据为AI应用做好准备至关重要[4] - 公司正构建一个AI就绪的金融文档语料库,包含全球监管申报文件、财报电话会议记录、StreetAccount新闻等内容[4] - 通过添加补充信息、元数据标签和上下文图层来丰富数据集,更丰富的上下文意味着更聪明的人工智能、更可靠的结果以及基于深度上下文理解的工作流程[4] - 对于投资组合经理和分析师,这意味着可以将非结构化洞察与持仓数据无缝整合,从而追踪风险并捕捉信号[4] 技术架构与数据交付 - 公司经增强处理、已具备AI就绪能力的数据,是围绕检索增强生成 (RAG) 架构而构建的[5] - 数据通过开放的应用程序接口 (API) 生态系统和其他灵活的数据交付渠道对外提供[5] - 公司正在开发一个Snowflake Cortex知识扩展,旨在让用户能够发起语义搜索,并返回相关文档内容及其关联的元数据[5] - 通过这一扩展,Snowflake的Cortex AI可以无缝访问这些支持AI的非结构化数据,为用户提供洞察,支持决策,并赋能多种业务工作流程[5] 与Snowflake Intelligence的集成与互操作性 - 互操作性对释放数据价值并实现规模化数据增强至关重要,尤其是在与企业专有内容来源相结合的情况下[7] - Snowflake Intelligence通过多种方式补充了公司的AI就绪数据能力,包括允许用户使用自然语言进行查询、直接在Cortex Knowledge Extension上构建AI代理以及在结构化和非结构化数据集之上广泛应用生成式AI[7] - 这些能力有助于将内容转化为可执行的洞察,从而实现更快、更明智的决策,无需等待人工数据准备[7] - 通过将结构化市场数据、自有持仓数据和非结构化内容整合于统一视图,获得更深入的洞察[7] 集成带来的新可能性与开放式生态系统 - 将公司的AI就绪数据与Snowflake Intelligence集成,为用户处理信息的方式开辟了新的可能性[9] - 开放式生态系统使金融机构能够随时随地访问和利用AI就绪的内容,无论是在Snowflake平台内还是通过公司API集成到自有平台、模型和应用程序中,都能实现最大价值[9] - 这种灵活的方法确保团队能够将情境洞察与内部专有数据及外部数据源相结合,在不被单一工作流所束缚的前提下,持续推动实验、迭代以及可规模化的创新[9] - 凭借具备AI就绪性且互操作性的基础架构,洞察生成能力可以跟上信息体量和复杂性不断增长的节奏[9] - 高质量的洞察力和竞争优势取决于能否随时随地获取最新、最可靠的情报[9] 具体应用场景示例 - 通过语义搜索技术,在新闻和文字记录中捕捉早期信号,比传统数据集更快地发现新兴主题[11] - 借助智能代理自动化竞争与风险情报分析,实时追踪同行评论、监管政策变动及申报文件动态更新[11] - 从非结构化内容中提取情感、业绩指引和可执行的洞察,用于丰富模型、仪表盘和下游业务工作流程[11]
4万星开源项目被指造假,MemGPT作者开撕Mem0:为营销随便造数据,净搞没有意义的测试
36氪· 2025-08-15 17:31
行业争议事件 - Mem0团队在4月底发布的论文中声称其Mem0系统在LOCOMO基准测试中击败所有竞争对手,其中在"LLM-as-a-Judge"指标上相较于OpenAI提高了26% [1] - Letta AI联合创始人兼CTO Sarah Wooders公开指控Mem0发布的MemGPT基准测试数据存在问题,指出Mem0未回应关于实验具体运行方式的询问,且在不进行大规模代码重构的情况下无法完成该测试 [1] - 网友评论指出,当Letta和Zep按正确方式运行基准测试后,两者的得分都比Mem0的最佳成绩高出10% [3] 公司背景与融资 - Letta公司由加州大学伯克利分校博士生Sarah Wooders和Charles Packer创立,其MemGPT项目开源后已累积17.8k stars [5][6] - Letta获得了由Felicis的Astasia Myers领投的1000万美元种子资金,本轮估值为7000万美元,并得到谷歌Jeff Dean、Hugging Face的Clem Delangue等天使投资人支持 [6] - Mem0由印度工程师Taranjeet Singh和Deshraj Yadav成立,其开源项目Embedchain下载量超过200万次,Mem0开源不到一天就获得9.7k stars,目前累积38.2k stars [6][8] 技术方案对比 - MemGPT借鉴传统操作系统理念,通过构建记忆层级让智能体主动管理信息,在固定上下文窗口内保持无限记忆容量 [4] - Mem0选择通过通用、可扩展的记忆架构解决问题,充当AI应用程序和大模型之间的记忆层,提供轻量级的记忆层API和向量检索 [8] - Mem0在4月底的论文中引入了基于图的记忆表示来增强关系建模能力,使用Neo4j作为底层图数据库,声称在LOCOMO基准测试中响应准确率比OpenAI提升26%、延迟比全上下文方法降低91%、token使用量节省90% [10][12] 基准测试有效性讨论 - Letta指出仅通过将对话历史存储在文件中而不使用专用记忆工具,就在LOCOMO上达到了74.0%的准确率,高于Mem0报告的图记忆版本68.5% [18][19] - 公司认为智能体记忆能力更多取决于智能体如何管理上下文,而不是所使用的具体检索机制,智能体可以生成自己的搜索查询并持续迭代搜索 [19][20] - Letta提出评估智能体记忆能力的替代方法,包括其自有的Letta Memory Benchmark和Terminal-Bench,前者评估记忆管理能力,后者测试解决复杂长时间运行任务的能力 [22] 行业现状与挑战 - 大模型一直受限于固定的上下文长度,缺乏长期记忆会导致智能体遗忘信息、无法随时间学习改进,在长时间复杂任务中失去目标 [3] - 业内出现多种专用工具将"记忆"作为可插拔服务,常见方式包括使用知识图谱或向量数据库等方案 [8] - 单独评估记忆工具的有效性极其困难,记忆质量更多取决于底层智能体系统管理上下文和调用工具的能力,而非记忆工具本身 [8]
登上热搜!Prompt不再是AI重点,新热点是Context Engineering
机器之心· 2025-07-03 16:01
上下文工程的核心概念 - 将LLM视为通用的、不确定的文本生成函数而非拟人化实体 强调其无状态特性 需通过输入文本来控制输出[4][5][8] - 上下文工程的核心在于构建有效输入文本系统 而非依赖单句"魔法咒语"式的提示词工程[9][11] - LLM被类比为新型操作系统 需要为其准备完整运行环境而非零散指令[13] 上下文工程的技术要素 - 采用自动化系统构建"信息流水线" 从多源自动抓取整合数据形成完整上下文[15][17] - 工具箱包含四大核心工具:指令下达、知识记忆管理、检索增强生成(RAG)、智能体自主查资料[19][21] - RAG技术通过知识库检索防止模型幻觉 确保回答基于事实[19] - 智能体技术实现动态信息获取 自主判断需求并整合多源数据[21] 工程实践方法论 - 采用科学实验式流程 分"从后往前规划"和"从前往后构建"两阶段实施[23][24][25] - 实施路径:明确输出目标→倒推所需输入→设计自动化生产系统[26] - 模块化开发流程:依次测试数据接口、搜索功能、打包程序 最终进行端到端系统测试[30] - LangChain生态提供实践支持 包括LangGraph和LangSmith等工具[29][31]
AI入侵EDA,要警惕
半导体行业观察· 2025-07-03 09:13
EDA行业迭代循环与AI应用 - EDA流程中长期存在迭代循环问题 门电路延迟和线路延迟的相当性使时序收敛变得困难 串行运行工具会导致决策后果不透明[1] - 解决方案是将决策工具、估算器和检查器集成到单一工具中 实现实时决策检查 减少不良结果风险 该模式正扩展至需交互反馈的多领域[1] - 行业已形成严格的验证文化 所有AI生成内容需经过验证 这与检索增强生成(RAG)技术理念相似 但需平衡验证速度与资源投入[3][5] AI幻觉在EDA领域的辩证价值 - AI生成内容存在显著幻觉现象 如无法准确理解火车轨道结构等物理约束 产生不合逻辑的输出[2][4] - 加州理工学院学者提出AI幻觉是特性而非缺陷 模型本质是基于概率生成似是而非的内容 需通过RAG等技术进行事实核查[3] - 在EDA领域 AI可能生成创新电路架构 但需建立验证机制区分"明智决策"与"绝妙幻觉" 行业验证经验形成独特优势[5] 功能验证技术演进方向 - 需开发新型功能抽象方法 替代耗时回归测试 实现决策有效性快速评估 当前数字领域尚缺乏多物理场问题的成熟解决方案[5][6] - Arm的黄金模型实践证明 通过主模型派生多子模型可确保一致性 模型生成器技术对混合信号系统验证至关重要[6] - 数字孪生和降阶模型代表验证技术趋势 正确验证框架下 AI的创造性可能带来芯片架构重构 实现性能功耗突破性提升[6] AI与EDA融合的产业需求 - 行业亟需建立刺激集优化机制 平衡验证成本与反馈价值 同时开发能验证核心概念的抽象模型[6] - 当前工具依赖快速估算器 但功能验证速度滞后 需突破性技术缩短决策周期[5] - 历史决策路径依赖可能限制创新 AI驱动重构有望打破50年技术惯性 带来系统性优化[6]