Workflow
DTW择时模型
icon
搜索文档
技术择时信号:整体维持震荡,结构转为看好小盘
招商证券· 2025-04-12 20:54
量化模型与构建方式 1. **模型名称:DTW择时模型** - **模型构建思路**:基于相似性原理和DTW(动态时间弯曲)算法,通过比较当前指数行情与历史行情的相似度,筛选相似片段并预测未来涨跌幅,生成交易信号[27][28] - **模型具体构建过程**: 1. 计算当前行情与历史片段的DTW距离(弹性度量),筛选相似度高的片段[29] 2. 对筛选片段未来5日或1日涨跌幅加权平均(权重为距离倒数),公式: $$\text{预测涨跌幅} = \frac{\sum_{i=1}^n w_i \cdot r_i}{\sum_{i=1}^n w_i}$$ 其中$w_i$为距离倒数,$r_i$为历史片段未来涨跌幅[27] 3. 结合预测涨跌幅及其方差生成信号(如超过阈值则触发多空信号)[15] 4. 采用改进的DTW算法(如Itakura Parallelogram边界限制)避免传统DTW的"病态匹配"问题[31][37] - **模型评价**:在非宏观突变市场环境下超额收益稳定,但对政策突发变化敏感[16] 2. **模型名称:外资择时模型** - **模型构建思路**:基于外资关联资产(富时中国A50期货、南方A50ETF)的价格背离和升贴水指标,复合生成A股择时信号[36] - **模型具体构建过程**: 1. 从A50期货提取升贴水指标和价格背离指标,复合生成期货择时信号[36] 2. 从南方A50ETF提取价格背离指标,生成ETF择时信号[36] 3. 将期货与ETF信号加权复合,形成最终外资择时信号[36] - **模型评价**:样本外表现优异,2024年多头策略回撤控制较好[23] --- 模型的回测效果 1. **DTW择时模型** - 样本外(2022年11月以来):绝对收益17.39%,超额沪深300收益17.83%,最大回撤21.32%,周胜率超60%[16] - 2024年以来:绝对收益15.68%(沪深300基准),超额4.93%,最大回撤21.36%,交易胜率63.64%,盈亏比2.64[18] 2. **外资择时模型** - 全样本(2014-2024):多空年化收益18.96%,多头年化14.19%,最大回撤25.69%(多空)/17.27%(多头),日胜率55%[20] - 2024年样本外:多头绝对收益28.83%,最大回撤8.32%[23] --- 量化因子与构建方式 1. **因子名称:DTW距离因子** - **因子构建思路**:通过动态时间弯曲算法度量时间序列相似性,替代传统欧氏距离[29] - **因子具体构建过程**: 1. 对两条时间序列$Q$和$C$,计算累积距离矩阵$D(i,j)$: $$D(i,j) = \text{dist}(q_i,c_j) + \min(D(i-1,j), D(i,j-1), D(i-1,j-1))$$ 其中$\text{dist}$为局部距离(如欧氏距离)[29][31] 2. 引入Itakura Parallelogram边界限制,约束路径搜索范围以减少错误匹配[37] 2. **因子名称:外资背离因子** - **因子构建思路**:基于境外A股关联资产价格与境内指数的偏离程度构建[36] - **因子具体构建过程**: 1. 计算富时中国A50期货价格与沪深300指数的日内偏离率[36] 2. 计算南方A50ETF溢价率与A股指数的相关性[36] --- 因子的回测效果 (报告中未提供因子独立测试结果,仅作为模型输入组件) --- 关键指标说明 - **DTW距离**:弹性度量时间序列相似性,解决欧氏距离的"锁步"匹配问题[29] - **Itakura边界限制**:通过平行四边形约束路径搜索,提升匹配合理性[37]