Workflow
中证A500指增基金
icon
搜索文档
公募竞逐指数增强赛道 年内新成立产品数量同比增长438%
证券日报· 2025-06-16 00:19
指数增强基金市场概况 - 2024年6月16日东兴中证A500指数增强基金正式发行 年内新成立指增基金达70只 同比增长438% 募集金额超358亿元 [1] - 2023年指增基金成立数量最多达57只 2024年尚未过半但新成立数量已达42只 超过2022年全年45只的水平 [2] - 当前市场共有366只指增基金 93家公募机构参与布局 头部和中小型机构均在发力 [5] 指增基金快速发展的驱动因素 - 政策引导与监管机制推动 投资者需求结构性转变 对透明化+超额收益的需求上升 [3] - 指增基金定位介于被动指数基金和传统主动基金之间 特色在于追求较高跑赢指数的胜率 [3] - 宽基指增产品占比超60% 中证A500指增基金增长迅速 年内新成立70只中有38只属于此类 [3] 宽基指增产品的优势 - 宽基指数成分股流动性高 适合大规模资金运作 中证A500覆盖35个二级行业 量化模型可通过行业轮动捕捉机会 [4] - 宽基指数多行业覆盖与市值分层为量化策略提供超额收益挖掘空间 [4] 指增基金的核心竞争力构建 - 量化策略体系化运作是获取稳健超额收益的理想路径 需从收益端策略打磨和风险控制两方面着手 [5] - 超额收益获取方式包括选股优化和权重配置调整 需选出比基准指数更优的组合 [5] - 东兴基金未来将重点发力标准指增产品 从新一代宽基指数中精选有投资价值的标的 [6]
量化基金业绩跟踪周报(2025.05.26-2025.05.30)
西部证券· 2025-05-31 21:25
根据提供的研报内容,以下是量化模型与因子的总结: 量化模型与构建方式 1. **模型名称**:沪深300指数增强模型 **模型构建思路**:通过超额收益跟踪沪深300指数表现,采用多因子选股和优化权重的方法构建投资组合[9][10] **模型具体构建过程**: - 采用日频数据进行计算,年化采用242个交易日,几何年化 - 基金分类标准为Wind投资类型二级为指数增强型基金,跟踪沪深300指数 - 超额业绩计算的比较基准为沪深300全收益指数[31] 2. **模型名称**:中证500指数增强模型 **模型构建思路**:通过超额收益跟踪中证500指数表现,采用多因子选股和优化权重的方法构建投资组合[9][10] **模型具体构建过程**: - 采用日频数据进行计算,年化采用242个交易日,几何年化 - 基金分类标准为Wind投资类型二级为指数增强型基金,跟踪中证500指数 - 超额业绩计算的比较基准为中证500全收益指数[31] 3. **模型名称**:中证1000指数增强模型 **模型构建思路**:通过超额收益跟踪中证1000指数表现,采用多因子选股和优化权重的方法构建投资组合[9][10] **模型具体构建过程**: - 采用日频数据进行计算,年化采用242个交易日,几何年化 - 基金分类标准为Wind投资类型二级为指数增强型基金,跟踪中证1000指数 - 超额业绩计算的比较基准为中证1000全收益指数[31] 4. **模型名称**:中证A500指数增强模型 **模型构建思路**:通过超额收益跟踪中证A500指数表现,采用多因子选股和优化权重的方法构建投资组合[9][10] **模型具体构建过程**: - 采用日频数据进行计算,年化采用242个交易日,几何年化 - 基金分类标准为Wind投资类型二级为指数增强型基金,跟踪中证A500指数 - 超额业绩计算的比较基准为中证A500全收益指数[31] 5. **模型名称**:主动量化模型 **模型构建思路**:通过多因子选股和动态调整权重,实现绝对收益目标[9][10] **模型具体构建过程**: - 采用日频数据进行计算,年化采用242个交易日,几何年化 - 基金分类标准为Wind投资类型为普通股票型、偏股混合型、灵活配置型基金,根据投资名称、投资目标、基金经理等定义主动量化基金[31] 6. **模型名称**:股票市场中性模型 **模型构建思路**:通过多空对冲策略,降低市场风险,追求绝对收益[9][10] **模型具体构建过程**: - 采用日频数据进行计算,年化采用242个交易日,几何年化 - 基金分类标准为Wind投资类型二级为股票多空策略[31] 模型的回测效果 1. **沪深300指增模型** - 本周超额收益均值:0.35%[10] - 本月超额收益均值:0.40%[10] - 本年超额收益均值:1.30%[10] - 近一年跟踪误差:3.60%[10] 2. **中证500指增模型** - 本周超额收益均值:0.20%[10] - 本月超额收益均值:1.12%[10] - 本年超额收益均值:1.99%[10] - 近一年跟踪误差:4.99%[10] 3. **中证1000指增模型** - 本周超额收益均值:0.09%[10] - 本月超额收益均值:0.68%[10] - 本年超额收益均值:4.01%[10] - 近一年跟踪误差:5.15%[10] 4. **中证A500指增模型** - 本周超额收益均值:0.34%[10] - 本月超额收益均值:0.32%[10] - 本年超额收益均值:3.02%[10] - 本年跟踪误差:7.69%[10] 5. **主动量化模型** - 本周收益均值:0.10%[10] - 本月收益均值:2.20%[10] - 本年收益均值:2.93%[10] - 近一年最大回撤:16.17%[10] 6. **股票市场中性模型** - 本周收益均值:0.04%[10] - 本月收益均值:0.17%[10] - 本年收益均值:0.74%[10] - 近一年最大回撤:5.15%[10] 量化因子与构建方式 (研报中未提及具体量化因子的构建,故跳过此部分) 因子的回测效果 (研报中未提及具体量化因子的回测效果,故跳过此部分)