二维半导体材料

搜索文档
芯片产业的下一个颠覆性突破!
半导体芯闻· 2025-07-07 17:49
半导体材料革新 - 二维半导体材料将成为未来业界焦点,因硅基三维晶体管制造结构日趋复杂且成本指数级攀升,技术演进边际效益显著递减[2] - 二维材料凭借原子级厚度(0.3-10nm)与范德华异质结技术,可构建垂直场效应晶体管实现10倍于FinFET的密度突破,在1nm栅长下保持10⁶开关比[6] - 二维材料易于与其他材料集成,不受晶格常数匹配约束,能带范围涵盖半金属、半导体和绝缘体[8] 二维材料特性与优势 - 石墨烯作为首个被发现的二维材料,厚度仅0.335纳米,拥有高强度、高导电性、高导热性等优异物理性质[9] - 7纳米制程石墨烯芯片相比硅基芯片速度提升高达300%,但需解决零带隙特性问题[9] - 过渡金属二硫族化合物(TMDCs)如MoS₂、WS₂在单层状态下呈直接带隙半导体性质,能隙约1.8eV[14] - 黑磷为少有的本征直接带隙材料,能带结构对层数敏感,从单层2eV连续调谐至块体约0.3eV[14] 产业化进展与市场规模 - 2024年全球二维半导体材料市场规模达18亿美元,石墨烯占比45%,TMDs占比30%[16] - 预计2025-2030年市场规模以24%-26.5%复合增长率扩张,2030年有望突破45亿美元[16] - 原集微科技启动首条全国产二维半导体集成电路工程化示范线,计划三年内建设商业化量产线[17] - 原集微联合团队发布全球首款基于二维半导体的32位RISC-V架构微处理器"无极",集成5900个晶体管,性能提升51倍[17] 技术突破与创新 - 天津大学和佐治亚理工学院团队成功生产出外延半导体石墨烯单层,攻克石墨烯带隙难题[11] - 北京科技大学团队提出"二维Czochralski"方法,可在常压下快速生长厘米级、无晶界单晶MoS₂晶畴[32] - 上海微系统所开发单晶金属插层氧化技术,室温下制备出单晶氧化铝栅介质晶圆,界面态密度低至8.4×10⁹ cm⁻² eV⁻¹[38] - 宾夕法尼亚州立大学开发基于CMOS技术的二维单指令集计算机,首次完全由二维材料构建[39] 应用领域拓展 - 二维材料在AI、大数据时代被广泛应用于存储器件、神经形态器件、量子器件、离子晶体管等领域[9] - 东南大学团队基于二维极性半导体实现门控可调极化梯度机制,模拟生物突触功能,记忆保持时间约331秒[27] - 中科院物理所展示基于MoS₂的中等规模柔性集成电路,集成112个薄膜晶体管[48] - 南京大学团队通过设计-工艺协同优化,实现GHz频率二维半导体环形振荡器电路,性能比原有记录提升200倍[51] 未来发展趋势 - IMEC预计到2039年基于二维材料的第二代2DFET将成为主流[53] - 短期(3-5年)二维材料将在低功耗边缘计算芯片、高性能光电器件及柔性显示领域率先商业化[63] - 中期(5-10年)二维材料有望在3纳米以下逻辑芯片及存算一体架构中大规模替代硅基材料[63] - 长期(10年以上)二维材料可能成为量子计算、光量子通信及生物电子等颠覆性技术的核心载体[63]
芯片新时代,将开启
半导体行业观察· 2025-07-07 08:54
半导体行业技术趋势 - 摩尔定律日益放缓,硅基三维晶体管制造成本指数级攀升而边际效益递减,创新重点从尺寸缩放转向功能性缩放 [2] - 二维半导体材料因原子级厚度(0.3-10nm)和范德华异质结技术成为突破瓶颈的关键,可实现10倍于FinFET的密度突破,在1nm栅长下保持10⁶开关比 [5] - 二维材料覆盖半金属/半导体/绝缘体等类型,具备宽能带范围、晶格结构可调和易集成特性,适用于存储/神经形态/量子器件等后摩尔时代应用 [7][8] - 石墨烯虽具300%速度提升潜力但零带隙限制逻辑应用,2024年外延半导体石墨烯单层技术突破实现带隙从"0"到"1"的跨越 [8][10] 二维材料产业化进展 - 2024年全球二维半导体市场规模达18亿美元,石墨烯占45%/TMDs占30%,预计2025-2030年CAGR达24%-26.5%,2030年突破45亿美元 [15] - 原集微启动首条全国产二维半导体示范线,已开发32位RISC-V处理器"无极",集成5900个晶体管且性能提升51倍,目标三年内实现1-2nm级芯片 [16][19] - 台积电/英特尔/三星/IMEC加速布局二维半导体,重点攻关材料生长/掺杂/接触电阻等核心问题,IMEC预测2039年2DFET将成为主流 [15][52] 前沿技术突破 - 北科大开发2DCZ法生长厘米级无晶界MoS₂单晶,场效应晶体管良率高且迁移率稳定,为晶圆级制备提供新途径 [31] - 上海微系统所研制单晶氧化铝栅介质晶圆,界面态密度低至8.4×10⁹ cm⁻² eV⁻¹,击穿场强17.4 MV/cm满足国际路线图要求 [36][38] - 宾夕法尼亚州立大学实现全二维材料CMOS计算机,3V电压下频率达25kHz,功耗皮瓦级,开关能量约100pJ [39] - 南京大学团队通过DTCO优化实现GHz频率二维半导体环形振荡器,性能较前提升200倍,展示1nm节点应用潜力 [50] 材料与工艺挑战 - 材料生长面临高温(1000℃)衬底限制或转移工艺良率问题,需平衡直接生长一致性与转移成本 [53][54] - 栅极沉积因二维材料无悬挂键导致ALD困难,源漏接触电阻/掺杂调控/CMOS兼容性尚未根本解决 [55][59] - 规模化生产需提升300mm晶圆兼容性,器件可靠性/一致性要求较实验室厘米级样品大幅提高 [57][58] 发展路径展望 - 短期(3-5年)聚焦低功耗边缘计算/光电器件/柔性显示领域商业化,如原集微2029年量产计划 [65] - 中期(5-10年)替代3nm以下硅基逻辑芯片,推动能效比提升10倍并发展三维异构集成技术 [65] - 长期(10年以上)拓展至量子计算/生物电子等颠覆性领域,重构全球半导体供应链格局 [63][65]
研判!2025年中国二维半导体材料行业发展背景、相关政策、市场规模及未来趋势分析:二维半导体材料产业应用逐步推进[图]
产业信息网· 2025-05-19 09:07
二维半导体材料行业概述 - 二维材料指在一个维度上尺寸减小到原子层厚度,其他两个维度尺寸较大的材料,典型代表为石墨烯[1][2] - 2004年石墨烯的发现开启了二维材料研究热潮,其独特电学性质引发科学界和工业界广泛关注[1][2] - 二维材料因量子局限效应展现出与三维结构截然不同的物理性质,覆盖超导体/金属/半导体/绝缘体等多种类型[3] 二维半导体材料分类 - 石墨烯占据2024年全球二维半导体材料市场45%份额,主要因其优越导电性和机械强度[1][14] - 过渡金属二硫族化合物(TMDs)如MoS₂、WS₂为第二大细分市场,占比30%,具有可调带隙(1-2eV)特性[14][9] - 其他二维材料包括单元素类(硅烯/锗烯)、主族金属硫族化合物(GaS/InSe)及h-BN等,具有多样化能带结构[3] 全球半导体材料市场背景 - 2024年全球半导体材料市场规模达675亿美元,同比增长3.8%,其中晶圆制造材料占429亿美元[5] - 中国台湾(200.9亿美元)、中国大陆(134.58亿美元)和韩国为前三大市场,合计占比65%[7] - 中国大陆市场同比增长5.3%,在硅片/电子特气/光刻胶等领域加速国产化替代[7] 二维半导体技术进展 - 中国实现12英寸二维半导体晶圆批量化制备,突破5900个晶体管集成的32位RISC-V微处理器[16] - 技术演进涵盖四大维度:通道工程(CVD生长→晶圆级外延)、接触工程(范德华接触优化)、栅堆叠(高κ介质)、集成技术(FinFET→CFET)[18][19] - 模块化局域元素供应生长技术实现与现有半导体工艺兼容的12英寸晶圆制备[16] 政策支持与产业布局 - 中国将二维半导体纳入《前沿材料产业化重点发展指导目录》,2024年出台多项标准制定与中试平台建设政策[11][13] - 台积电/英特尔/IMEC等国际巨头加速布局二维半导体赛道,推动实验室成果向规模化生产转化[14] - 山东省2024年专项计划重点发展二维半导体在集成电路/高速飞行器等领域的应用[13] 市场前景与发展趋势 - 2024年全球二维半导体材料市场规模达18亿美元,主要应用于光电子/量子计算/柔性电子领域[1][20] - 二维半导体被视为突破摩尔定律物理极限的关键技术,有望重塑全球半导体竞争格局[14][20] - 技术发展路径从基础研究向FAB级兼容工艺跨越,推动电子与计算技术进入新纪元[18][16]