机器学习模型

搜索文档
走向“奇点”--AI重塑资管业
华尔街见闻· 2025-08-28 11:03
核心观点 - 人工智能正在引发资产管理革命 核心是人机协作带来的投资新范式 未来十年最成功的投资者将是能同时驾驭量化与传统方法并将AI作为力量倍增器的复合型人才 [1] - 结合人工智能和人类洞察的混合模型能在超过3860只股票的广泛池中产生显著收益 [1] 技术影响 - AI由数据驱动技术组成 深度嵌入投资流程 其崛起源于数据爆炸 算力进步和工具普及化 [2] - 对资管业影响最大的三项技术包括机器学习 神经网络和大型语言模型 [2][5] - 机器学习通过学习数据模式进行预测 擅长识别非线性关系 提高预测准确性 [5] - 神经网络处理高维度非结构化数据表现出色 但可解释性差且训练成本高 [5] - 大型语言模型将自然语言处理推向主流 能从财报电话会等文本中提取洞察 将定性文本转化为结构化数据 [5] 人机优势对比 - 机器优势体现在速度 广度和一致性 数据处理速度和规模远超人类团队 能每日扫描10000份财报电话会议纪要 [3][6] - 机器能不知疲倦地重复执行任务 结果具有高度可重复性 [6] - 人类优势体现在背景 复杂性和因果推断 能解读监管突变等非重复性事件 [4][13] - 人类能构建投资逻辑 理解多重驱动因素相互作用 评估企业文化等无形资产 [13] - 人类能通过类比推理适应市场新范式 而AI依赖历史数据在全新环境中会失灵 [13] 投资融合趋势 - AI打破量化投资与基本面投资间的传统壁垒 两者正走向"奇点"融合点 [9] - 量化投资者借助大语言模型处理非结构化数据 捕捉以往只有基本面分析师能识别的信号 [10] - 基本面管理者利用AI工具扩展研究范围 机器学习筛选投资标的 AI助手阅读报告 估值模型自动生成DCF基准 [11] - 分析师从数据处理中解放 专注于渠道调研和管理层访谈等高附加值活动 [11] 实证研究结果 - 人类分析师在最看好和最不看好的各3只股票上表现优于机器 [14] - 对于关注度居中的股票 GBM模型预测表现更佳 [14] - 混合模型回测自2010年起在3860多只股票中展现强大回报生成能力 [12] - 人机协作将成为未来投资的关键竞争优势 公司通过专有数据和定制模型实现差异化 [12]