Workflow
分辨率增强技术(RET)
icon
搜索文档
十万零件筑就的工业明珠!中国光刻机突围战打响
材料汇· 2025-07-26 23:45
光刻技术核心 - 光刻是半导体制造中最重要且技术壁垒最高的环节,通过光刻机将掩模版图案转移至晶圆,直接决定产线技术水平 [8][9] - 光刻工艺分为曝光、显影和清洗三阶段,需涂覆光刻胶并通过化学反应实现图案转移 [9][14] - 分辨率是光刻机核心指标,由瑞利公式决定,与光源波长λ、数值孔径NA及工艺因子k1相关 [2][15][25] 光刻机技术演进 - 光源波长从436nm汞灯光源迭代至13.5nm EUV光源,优化跨度最大 [35][36][38] - 数值孔径NA通过浸润式技术(折射率1.44)和透镜设计提升,浸没式光刻机NA达1.35 [41][53][57] - 工艺因子k1通过RET技术突破0.25理论极限,包括OPC、OAI、PSM等方法 [59][60][62] 光刻机核心部件 - 光源系统:EUV光源由CO2激光轰击锡靶液滴产生,全球仅Cymer和Gigaphoton能供应 [3][39][69] - 光学系统:DUV采用29片透镜组,EUV采用蔡司反射镜(平整度<0.05nm) [73][74][76] - 工件台系统:ASML双工件台技术使生产效率达295片/小时,精度控制是关键 [78][79] 行业竞争格局 - ASML凭借双工件台、浸润式和EUV技术垄断市场,EUV市占率100% [80][83][84] - 尼康聚焦DUV(38nm分辨率),佳能主攻KrF/i线等低端市场 [113][114][115] - 全球光刻机CR3近100%,ASML占60%份额 [83][84] 国产化进展 - 上海微电子已实现90nm DUV光刻机量产,封装光刻机全球市占40% [131] - 华卓精科突破双工件台技术,国科精密研发NA=0.75物镜系统 [128][131] - 中科院22nm超分辨光刻装备通过验收,结合双重曝光可达10nm级 [128]
半导体基石系列之四:工业明珠灿若星河,光刻机国产化行则将至
长江证券· 2025-07-26 19:24
报告行业投资评级 - 看好丨维持 [11] 报告的核心观点 - 通过对光刻机关键技术、关键工艺环节的分析以及对光刻机行业格局的复盘,我国光刻机产业或可充分发挥后发优势,集中力量攻克核心环节,最终实现国产自主之路 [4] 根据相关目录分别进行总结 灿若星河,光刻机加冕半导体皇冠 - 光刻是晶圆制造中最重要的技术之一,核心设备光刻机直接决定晶圆制造产线的技术水平,也是晶圆制造工艺中价值量和技术壁垒最高的设备之一 [22] - 光刻技术的核心是使用光刻机将芯片的设计图案转移至硅片,加工步骤分为曝光、显影和清洗三个阶段 [24] - 分辨率是光刻系统能够实现的最小精度,也是光刻曝光系统最重要的技术指标之一,为提高分辨率,工程中常用的方式包括增大投影光刻物镜的数值孔径、采用更短的工作波长、减小光刻工艺因子等 [28][32] - 光刻机的关键尺寸(分辨率)与集成电路的核心物理参数存在对应关系,ASML 将光刻工艺的关键尺寸(分辨率)定义为半周期间距 [34][35] - 影响光刻机加工的集成电路关键尺寸的因素有光源波长λ、数值孔径 NA 以及工艺因子 k1,减小特征尺寸提高精度的主要方式为光源波长的缩短,当波长缩短到当时科技的极限时,主要的攻克方向逐渐变为增大 NA 以及缩小 k1,直到更短波长的光源被发现并大规模应用 [39] - 光源波长的发展历程经历汞灯、准分子激光器、EUV 光源三个阶段,减小光刻机所用光源波长是优化分辨率最直接有效的方式 [43] - 当光源演进触及技术瓶颈时,增大数值孔径成为减小光刻机分辨率另一有效的方式,数值孔径的计算公式为 NA=nsinθ,增大 NA 的方式包含增大透镜工作介质的折射率或增大透镜的收光能力 [51] - 工艺因子 k1 包含因素多样,RET 技术可增大 k1,增强分辨率,主要方法包括邻近效应修正、离轴照明、使用具有相移的掩模版、添加亚分辨率的辅助图形等 [74] 百川归海,光刻机零件聚焦三大核心 - 光刻机内部最核心的环节主要在于光源系统、光学系统、工件台系统,除以上三大核心环节,光刻机内部还包括晶圆传输系统、减震系统、外部的操纵台,并且光刻机的曝光还需要在特制的洁净室 [77] - 光源系统为光刻过程提供能量,是光刻机最关键的环节,由早期的高压汞灯,发展至准分子激光器系统,再到现在的 EUV 光源,光源系统的升级极大缩小了波长,是提高光刻机分辨率最重要的方式 [82] - 光源系统具备极高壁垒,全球供应商寥寥可数,目前全球仅 ASML 的子公司 Cymer 和日本的 Gigaphoton 可供应 EUV 光源,我国科益虹源紧随其后成为目前全球第三家 DUV 光源供应商 [83] - 光学系统不仅是光的传播路径,同时可以缩小像差,增大收光角,进而提高分辨率,对于 DUV 光刻机需要采用 29 片透镜,而 EUV 光刻机则需要蔡司定制的平整度小于 0.05nm 的反射镜 [88][89] - 工件台系统主要功能是负责控制硅片步进运动,同时重点要兼顾掩模版、晶圆和双工件台的实时对准,ASML 提出的双工件台系统极大提升光刻的精度与效率,目前除 ASML 外,我国华卓精科打破技术壁垒,最先进的水平可实现支持浸润式光刻机 ArFi 的双工件台 [91] 筚路蓝缕,复盘光刻机龙头波澜历程 - 光刻机发展历史大致可分为三个主要阶段,各大龙头相互替代关键因素在于技术迭代升级,根据光刻机产业重心来看,经历了美国—日本—荷兰(ASML)的迁移过程 [94] - 凭借极高的技术壁垒,全球光刻机市场“一超双强”格局基本稳定,从销售台数看,21 世纪后光刻机市场基本由三巨头 ASML,佳能以及尼康垄断,CR3 接近 100%,其中 ASML 市占率近 60%独占鳌头,从产品布局看,ASML 在先进制程优势显著,尼康占据 ArFi 光刻机剩下的不到 10%份额,而佳能光刻机主要覆盖 i 线以及 KrF 等相对低端制程 [97] - 1960~1980 年,美国作为半导体技术的发源地,在早期近乎垄断了半导体制造业,其中具备代表性的龙头为 GCA 以及 Perkin Elmer,美国光刻机行业的先发优势受到严重冲击 [94][110] - 1980~2000 年,受益于 PC 崛起带动的存储需求爆发以及政府的大力扶持,日本半导体产业迅速崛起,尼康与佳能两大光刻机巨头实现对美国的反超,日本光刻机的崛起见证了举国体制下后发优势的充分发挥,或可成为我国良好的借鉴 [94][111][130] - 2000 至今,在光源波长达到 193nm 后,尼康选择攻克下一代 157nm 但遇到较大阻力,而 ASML 联合台积电转向浸润式光刻机,实现等效的 134nm 波长,而后续 ASML 在 EUV 光刻机的垄断正式奠定全球光刻机龙头地位 [94] 风起青萍,国产光刻路虽远行则将至 - 我国光刻机产业起步并不晚,但早期缺乏产业链的全面布局以及自主化的决心,发展历程缓慢,90 年代光刻机发展趋于停滞,没能延续起步阶段积累的优势 [145] - 自主化战略确立,政策扶持下国内光刻机行业扬帆再起,近年来在政府扶持和统一规划明确分工的前提下,后发优势凸显 [146] - 上海微电子是“02”专项光刻机项目承担主体,其封装光刻机在全球市场占有 40%以上的份额,国内市场占有率超 90%,在 IC 前道制造领域,公司 SSX600 系列步进扫描投影光刻机可满足 IC 前道制造 90nm、110nm、280nm 关键层和非关键层的光刻工艺需求 [150] - 国内多家公司在光刻机光学、整机、功能件等领域取得进展,可应用于光刻机等设备 [151]