分辨率

搜索文档
90nm只是起点!国产光刻机核心部件拆解与技术详解
材料汇· 2025-08-14 21:21
光刻机核心技术与市场分析 - 光刻工艺直接决定芯片制造的细微化水平,关键指标包括分辨率、焦深、套刻精度和产率,其中分辨率提升方式包括缩短曝光波长、增大数值孔径、降低工艺因子以及多重曝光 [2] - 2025年全球光刻机市场规模预计达293.7亿美元,其中照明+物镜、光源、工件台市场规模分别为47.8亿、28.6亿、21.5亿美元 [2] - EUV光刻机2025年市场规模预计96亿美元,其照明+物镜、光源、工件台市场规模分别为15.5亿、12.6亿、7.0亿美元 [2] 光刻机核心部件技术特征 - 投影光学光刻机主要部件包括光源、照明、物镜、工件台等,EUV光刻机特征体现在材料选择、多层反射膜结构、反射式投影系统等方面 [2] - 光源技术从汞灯发展到准分子激光器,EUV采用激光等离子体光源(LPP),需同时实现高脉冲能量和窄线宽 [55][56] - 投影物镜分为全折射式、折反式和全反射式,EUV因材料吸收问题必须采用全反射式结构 [62] - 工件台技术从机械导轨发展到气悬浮和磁悬浮,双工件台设计可同时进行测量与曝光提升效率 [69][70] ASML产业协作模式 - ASML采用全球供应链协作模式,关键供应商包括Zeiss(光学系统)、Cymer(光源)、TRUMPF(EUV激光器)等 [3] - 开放合作是光刻机发展主旋律,EUV光刻机涉及5000家供应商提供10万个零部件 [42] - 技术变革与产业协同是ASML成功关键,通过收购Cymer等公司整合核心技术 [3] 光刻机技术发展趋势 - 分辨率提升路径从缩短波长(436nm→13.5nm)转向浸没式(NA从0.2→1.35)和多重曝光技术 [15][26] - EUV光刻机需解决光源功率(250W)、多层膜反射率(6.5%)、真空环境磁悬浮工件台等技术难点 [57][58][90] - 无掩膜直写光刻技术在IC封装、平板显示等领域拓展应用,包括激光直写和电子束直写 [93][96] 国产化发展现状 - 国内光刻技术与全球先进水平存在差距,大基金三期将重点扶持光源、照明、物镜等核心部件 [3] - 光刻机镜片加工涉及超精密抛光(亚纳米精度)、多层膜沉积(磁控溅射)等高难度工艺 [100][103] - 2023年ASML EUV光刻机出货51台收入91亿欧元,ArFi光刻机出货125台收入90亿欧元 [101]
十万零件筑就的工业明珠!中国光刻机突围战打响
材料汇· 2025-07-26 23:45
光刻技术核心 - 光刻是半导体制造中最重要且技术壁垒最高的环节,通过光刻机将掩模版图案转移至晶圆,直接决定产线技术水平 [8][9] - 光刻工艺分为曝光、显影和清洗三阶段,需涂覆光刻胶并通过化学反应实现图案转移 [9][14] - 分辨率是光刻机核心指标,由瑞利公式决定,与光源波长λ、数值孔径NA及工艺因子k1相关 [2][15][25] 光刻机技术演进 - 光源波长从436nm汞灯光源迭代至13.5nm EUV光源,优化跨度最大 [35][36][38] - 数值孔径NA通过浸润式技术(折射率1.44)和透镜设计提升,浸没式光刻机NA达1.35 [41][53][57] - 工艺因子k1通过RET技术突破0.25理论极限,包括OPC、OAI、PSM等方法 [59][60][62] 光刻机核心部件 - 光源系统:EUV光源由CO2激光轰击锡靶液滴产生,全球仅Cymer和Gigaphoton能供应 [3][39][69] - 光学系统:DUV采用29片透镜组,EUV采用蔡司反射镜(平整度<0.05nm) [73][74][76] - 工件台系统:ASML双工件台技术使生产效率达295片/小时,精度控制是关键 [78][79] 行业竞争格局 - ASML凭借双工件台、浸润式和EUV技术垄断市场,EUV市占率100% [80][83][84] - 尼康聚焦DUV(38nm分辨率),佳能主攻KrF/i线等低端市场 [113][114][115] - 全球光刻机CR3近100%,ASML占60%份额 [83][84] 国产化进展 - 上海微电子已实现90nm DUV光刻机量产,封装光刻机全球市占40% [131] - 华卓精科突破双工件台技术,国科精密研发NA=0.75物镜系统 [128][131] - 中科院22nm超分辨光刻装备通过验收,结合双重曝光可达10nm级 [128]